Normalized defining polynomial
\( x^{16} - 3 x^{15} + 15 x^{14} - 40 x^{13} + 101 x^{12} - 200 x^{11} + 246 x^{10} - 275 x^{9} + 11 x^{8} + 80 x^{7} - 75 x^{6} + 133 x^{5} + 416 x^{4} + 505 x^{3} + 315 x^{2} + 100 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259160193017822265625=5^{12}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{355} a^{14} + \frac{102}{355} a^{13} - \frac{12}{71} a^{12} + \frac{25}{71} a^{11} + \frac{26}{355} a^{10} - \frac{29}{71} a^{9} - \frac{29}{355} a^{8} - \frac{15}{71} a^{7} - \frac{44}{355} a^{6} - \frac{19}{71} a^{5} + \frac{30}{71} a^{4} - \frac{47}{355} a^{3} + \frac{81}{355} a^{2} + \frac{18}{71} a - \frac{21}{71}$, $\frac{1}{63455350210255} a^{15} + \frac{29100111023}{63455350210255} a^{14} + \frac{23365291115337}{63455350210255} a^{13} - \frac{1017251845452}{12691070042051} a^{12} + \frac{8152918038986}{63455350210255} a^{11} - \frac{17499017894664}{63455350210255} a^{10} - \frac{206331926639}{893737326905} a^{9} - \frac{14124226277354}{63455350210255} a^{8} + \frac{1678485055506}{63455350210255} a^{7} + \frac{5977590450941}{63455350210255} a^{6} + \frac{1787824057891}{12691070042051} a^{5} - \frac{2109481417202}{63455350210255} a^{4} - \frac{11862174432936}{63455350210255} a^{3} + \frac{7376005860026}{63455350210255} a^{2} + \frac{5057063068986}{12691070042051} a - \frac{2592794518586}{12691070042051}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2119251492813}{63455350210255} a^{15} - \frac{5792468990947}{63455350210255} a^{14} + \frac{28706103897549}{63455350210255} a^{13} - \frac{14736070372368}{12691070042051} a^{12} + \frac{175881114936818}{63455350210255} a^{11} - \frac{4651570963478}{893737326905} a^{10} + \frac{326444122467393}{63455350210255} a^{9} - \frac{283743905123003}{63455350210255} a^{8} - \frac{258534647751207}{63455350210255} a^{7} + \frac{367445787773607}{63455350210255} a^{6} - \frac{22037624309386}{12691070042051} a^{5} + \frac{215037656257939}{63455350210255} a^{4} + \frac{808861959591139}{63455350210255} a^{3} + \frac{932216226222152}{63455350210255} a^{2} + \frac{92021038988098}{12691070042051} a + \frac{22586060686627}{12691070042051} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12699.1258424 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, \(\Q(\zeta_{5})\), 4.0.12625.1, 8.4.643938125.1, 8.4.16098453125.1, 8.0.159390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.3.1 | $x^{4} - 101$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |