Normalized defining polynomial
\( x^{16} - 2 x^{15} + 15 x^{14} - 35 x^{13} + 104 x^{12} - 237 x^{11} + 493 x^{10} - 860 x^{9} + 1891 x^{8} - 2087 x^{7} + 5648 x^{6} - 3986 x^{5} + 11209 x^{4} - 5424 x^{3} + 12119 x^{2} - 3479 x + 5041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259160193017822265625=5^{12}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{32365512640164631935031} a^{15} - \frac{4118617289331707306916}{32365512640164631935031} a^{14} - \frac{14746950173556684925296}{32365512640164631935031} a^{13} - \frac{6231357823106687423951}{32365512640164631935031} a^{12} + \frac{9932998351115014242142}{32365512640164631935031} a^{11} + \frac{7141070998906811069898}{32365512640164631935031} a^{10} - \frac{10345471289736257844161}{32365512640164631935031} a^{9} + \frac{4045403028262294257793}{32365512640164631935031} a^{8} + \frac{4778491452210181285765}{32365512640164631935031} a^{7} + \frac{12647430672520091676978}{32365512640164631935031} a^{6} - \frac{9925821505477975716884}{32365512640164631935031} a^{5} - \frac{985656012436600308973}{32365512640164631935031} a^{4} + \frac{8542455133203817727780}{32365512640164631935031} a^{3} + \frac{1580618657369376391740}{32365512640164631935031} a^{2} + \frac{263346415697451793759}{32365512640164631935031} a + \frac{159679525482700053966}{455852290706544111761}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4951145675706059159}{1044048794844020385001} a^{15} - \frac{13596892400226106520}{1044048794844020385001} a^{14} + \frac{70542323483369498203}{1044048794844020385001} a^{13} - \frac{193594546831675306891}{1044048794844020385001} a^{12} + \frac{478627303913287523966}{1044048794844020385001} a^{11} - \frac{1068736034649502349771}{1044048794844020385001} a^{10} + \frac{2129150690789142976419}{1044048794844020385001} a^{9} - \frac{3402730291693752251596}{1044048794844020385001} a^{8} + \frac{7152712820625952516195}{1044048794844020385001} a^{7} - \frac{8585416532099784422206}{1044048794844020385001} a^{6} + \frac{18114939293307323692961}{1044048794844020385001} a^{5} - \frac{17030594990475097047943}{1044048794844020385001} a^{4} + \frac{27390982535147587060109}{1044048794844020385001} a^{3} - \frac{18318745451584444307628}{1044048794844020385001} a^{2} + \frac{16263518454063609516759}{1044048794844020385001} a - \frac{71309558864557845978}{14704912603436906831} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8532.43184084 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||