Normalized defining polynomial
\( x^{16} - 7 x^{15} + 37 x^{14} - 116 x^{13} + 292 x^{12} - 456 x^{11} + 478 x^{10} + 202 x^{9} - 1185 x^{8} + 2156 x^{7} - 196 x^{6} - 4451 x^{5} + 12348 x^{4} - 16596 x^{3} + 16675 x^{2} - 9802 x + 4111 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259160193017822265625=5^{12}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{3}{10} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{10} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{10} + \frac{2}{5} a^{9} + \frac{3}{10} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{3}{10} a^{3} - \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{110} a^{14} - \frac{1}{22} a^{13} + \frac{3}{110} a^{12} - \frac{23}{110} a^{11} - \frac{13}{110} a^{10} + \frac{24}{55} a^{9} + \frac{17}{110} a^{8} - \frac{3}{110} a^{7} - \frac{13}{55} a^{6} - \frac{13}{110} a^{5} + \frac{5}{11} a^{4} + \frac{31}{110} a^{3} - \frac{21}{110} a^{2} - \frac{23}{55} a - \frac{7}{110}$, $\frac{1}{52050720885187090} a^{15} + \frac{4400931256093}{1679055512425390} a^{14} + \frac{792081687811294}{26025360442593545} a^{13} + \frac{4792396633925}{253905955537498} a^{12} + \frac{419406704197037}{4731883716835190} a^{11} - \frac{5677047039232297}{52050720885187090} a^{10} - \frac{4184760546996229}{52050720885187090} a^{9} - \frac{1271254152147608}{26025360442593545} a^{8} - \frac{1806470072237786}{26025360442593545} a^{7} + \frac{6496138528363017}{52050720885187090} a^{6} + \frac{3681315408192834}{26025360442593545} a^{5} + \frac{1950210787064059}{5205072088518709} a^{4} - \frac{7636224489695101}{26025360442593545} a^{3} + \frac{1913258341488887}{10410144177037418} a^{2} + \frac{177918561870228}{5205072088518709} a + \frac{11279759223553234}{26025360442593545}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{26902112308265}{5205072088518709} a^{15} + \frac{33926820817163}{839527756212695} a^{14} - \frac{5464094184343431}{26025360442593545} a^{13} + \frac{7934920372712}{11541179797159} a^{12} - \frac{43048132468419363}{26025360442593545} a^{11} + \frac{68013552511812938}{26025360442593545} a^{10} - \frac{1001993587265814}{473188371683519} a^{9} - \frac{49492861378153158}{26025360442593545} a^{8} + \frac{232195811428391898}{26025360442593545} a^{7} - \frac{295763203487827842}{26025360442593545} a^{6} - \frac{19981593167055989}{26025360442593545} a^{5} + \frac{82632287872460903}{2365941858417595} a^{4} - \frac{370497867576183199}{5205072088518709} a^{3} + \frac{2313446552386777309}{26025360442593545} a^{2} - \frac{1661719226709335379}{26025360442593545} a + \frac{773219108489750616}{26025360442593545} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8414.57802499 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||