Normalized defining polynomial
\( x^{16} - 4 x^{15} + 92 x^{14} - 282 x^{13} + 5025 x^{12} - 11798 x^{11} + 152482 x^{10} - 328966 x^{9} + 3081316 x^{8} - 4826910 x^{7} + 40409550 x^{6} - 41923450 x^{5} + 270742200 x^{4} - 230804400 x^{3} + 667377250 x^{2} - 275908750 x + 31721125 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258498575149187174400000000000000=2^{24}\cdot 3^{12}\cdot 5^{14}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{8} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{14} + \frac{1}{25} a^{13} + \frac{2}{25} a^{12} - \frac{2}{25} a^{11} - \frac{2}{5} a^{10} - \frac{3}{25} a^{9} + \frac{12}{25} a^{8} + \frac{4}{25} a^{7} + \frac{1}{25} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{23057803679357974049200809278462843753383564559670115833885025} a^{15} - \frac{369486344389816720958926557458422577180901839835809716081008}{23057803679357974049200809278462843753383564559670115833885025} a^{14} + \frac{1272045719155306836941901087889871622188353925041803476862078}{23057803679357974049200809278462843753383564559670115833885025} a^{13} - \frac{178630390792622052575726902405188464525630575610243179911842}{4611560735871594809840161855692568750676712911934023166777005} a^{12} - \frac{395868487176907083595230175108604876618010301917937385164087}{23057803679357974049200809278462843753383564559670115833885025} a^{11} + \frac{11334419633676243651311428701617579452280548585816358145177027}{23057803679357974049200809278462843753383564559670115833885025} a^{10} + \frac{867723642113002769977431906198995383397735686639151248383784}{23057803679357974049200809278462843753383564559670115833885025} a^{9} + \frac{6263953425738379018038165080835489878872506462825968664464096}{23057803679357974049200809278462843753383564559670115833885025} a^{8} - \frac{1204667700132685804081707643650527742995767465582315126678583}{4611560735871594809840161855692568750676712911934023166777005} a^{7} + \frac{6285010265280654752066307261701860894925000136999740666974321}{23057803679357974049200809278462843753383564559670115833885025} a^{6} + \frac{761210998888249724179421057893042814391369959129127279049238}{4611560735871594809840161855692568750676712911934023166777005} a^{5} + \frac{1068038098357093119377267823037682812853013963839567779992294}{4611560735871594809840161855692568750676712911934023166777005} a^{4} - \frac{158937874033201211415158389251623998180066961707696359991515}{922312147174318961968032371138513750135342582386804633355401} a^{3} - \frac{137506495301604645675345937119561128977017106491642940834718}{922312147174318961968032371138513750135342582386804633355401} a^{2} - \frac{40518189332256014597140888402551483637133097111997147890336}{922312147174318961968032371138513750135342582386804633355401} a + \frac{142763285997492330519983921368863496640814392026402835103195}{922312147174318961968032371138513750135342582386804633355401}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2140}$, which has order $34240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118606.845528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times Q_8).C_2^3$ (as 16T226):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times Q_8).C_2^3$ |
| Character table for $(C_2\times Q_8).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.16400.1, \(\Q(\zeta_{15})^+\), 4.4.738000.1, 8.8.544644000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |