Properties

Label 16.0.25816838161...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{8}\cdot 11^{8}\cdot 19^{6}$
Root discriminant $44.74$
Ramified primes $2, 5, 11, 19$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T868

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5285401, 0, -2503611, 0, 667436, 0, -110594, 0, 15763, 0, -1672, 0, 214, 0, -7, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^14 + 214*x^12 - 1672*x^10 + 15763*x^8 - 110594*x^6 + 667436*x^4 - 2503611*x^2 + 5285401)
 
gp: K = bnfinit(x^16 - 7*x^14 + 214*x^12 - 1672*x^10 + 15763*x^8 - 110594*x^6 + 667436*x^4 - 2503611*x^2 + 5285401, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{14} + 214 x^{12} - 1672 x^{10} + 15763 x^{8} - 110594 x^{6} + 667436 x^{4} - 2503611 x^{2} + 5285401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(258168381614570521600000000=2^{16}\cdot 5^{8}\cdot 11^{8}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} + \frac{4}{11} a^{6} + \frac{5}{11} a^{4}$, $\frac{1}{11} a^{9} + \frac{4}{11} a^{7} + \frac{5}{11} a^{5}$, $\frac{1}{11} a^{10} + \frac{2}{11} a^{4}$, $\frac{1}{11} a^{11} + \frac{2}{11} a^{5}$, $\frac{1}{4598} a^{12} - \frac{75}{2299} a^{10} + \frac{137}{4598} a^{8} - \frac{147}{418} a^{6} + \frac{129}{418} a^{4} + \frac{6}{19} a^{2} - \frac{1}{2}$, $\frac{1}{4598} a^{13} - \frac{75}{2299} a^{11} + \frac{137}{4598} a^{9} - \frac{147}{418} a^{7} + \frac{129}{418} a^{5} + \frac{6}{19} a^{3} - \frac{1}{2} a$, $\frac{1}{353735579863878454} a^{14} - \frac{12427264050945}{353735579863878454} a^{12} + \frac{13202302857010481}{353735579863878454} a^{10} + \frac{493513905151356}{16078889993812657} a^{8} + \frac{1191592616398147}{16078889993812657} a^{6} + \frac{1051385443911185}{2923434544329574} a^{4} - \frac{77083997281605}{2923434544329574} a^{2} - \frac{4517061649893}{13987725092486}$, $\frac{1}{353735579863878454} a^{15} - \frac{12427264050945}{353735579863878454} a^{13} + \frac{13202302857010481}{353735579863878454} a^{11} + \frac{493513905151356}{16078889993812657} a^{9} + \frac{1191592616398147}{16078889993812657} a^{7} + \frac{1051385443911185}{2923434544329574} a^{5} - \frac{77083997281605}{2923434544329574} a^{3} - \frac{4517061649893}{13987725092486} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2105359.85991 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T868:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 53 conjugacy class representatives for t16n868 are not computed
Character table for t16n868 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.475.1, 4.0.5225.1, 4.2.275.1, 8.0.27300625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.10$x^{8} + 2 x^{6} + 8 x^{3} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.9$x^{8} + 6 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.8.6.1$x^{8} + 143 x^{4} + 5929$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.8.4.1$x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$