Normalized defining polynomial
\( x^{16} - x^{15} + 56 x^{14} + 41 x^{13} + 1061 x^{12} + 5462 x^{11} + 7309 x^{10} + 65716 x^{9} + 440098 x^{8} + 153755 x^{7} + 351327 x^{6} + 10670397 x^{5} + 19279393 x^{4} - 105270823 x^{3} + 45856595 x^{2} - 151471363 x + 282885323 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(257866565806827685775538626393321=31^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $106.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{217551798584467787892555532779990214137279277053082253259096905} a^{15} - \frac{1958757593094851223933587463034007359584133705014454124781576}{217551798584467787892555532779990214137279277053082253259096905} a^{14} - \frac{2200302474595067192784590485127443715521177839254133265635019}{43510359716893557578511106555998042827455855410616450651819381} a^{13} - \frac{4884670343134591763638063774521141650548599687978199275333857}{43510359716893557578511106555998042827455855410616450651819381} a^{12} - \frac{7027669466794620148285200536963878333349326154978422250122361}{43510359716893557578511106555998042827455855410616450651819381} a^{11} - \frac{10141220946518668875784465005249019877020567528840846083240219}{43510359716893557578511106555998042827455855410616450651819381} a^{10} - \frac{88849044515007763951481072470357858559141262277703464481930314}{217551798584467787892555532779990214137279277053082253259096905} a^{9} - \frac{82053990201774083526705205760450841440228782626577918447854779}{217551798584467787892555532779990214137279277053082253259096905} a^{8} - \frac{107409547037928116436996756550078696457522884218273954271231681}{217551798584467787892555532779990214137279277053082253259096905} a^{7} - \frac{95907470252488838629083914940749494417644351437540581760954576}{217551798584467787892555532779990214137279277053082253259096905} a^{6} - \frac{12388796483152130274828963265678662669381051486087948207308043}{217551798584467787892555532779990214137279277053082253259096905} a^{5} - \frac{95102602884418953563374762395926352673456855677689289886265532}{217551798584467787892555532779990214137279277053082253259096905} a^{4} + \frac{56335534707574285612494584976318656070276977626590856832276773}{217551798584467787892555532779990214137279277053082253259096905} a^{3} - \frac{41701481279345835717235452663850952837816483587880505508869027}{217551798584467787892555532779990214137279277053082253259096905} a^{2} - \frac{3412903319834542835013097909562003412948750953748509284455317}{43510359716893557578511106555998042827455855410616450651819381} a + \frac{93934546040101718463873109748189466760443764122174418260628402}{217551798584467787892555532779990214137279277053082253259096905}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 847898663.713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.39401.1, 8.0.63649990841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |