Normalized defining polynomial
\( x^{16} - 2 x^{15} + 5 x^{14} - 15 x^{13} + 40 x^{12} - 51 x^{11} + 137 x^{10} - 220 x^{9} + 285 x^{8} - 395 x^{7} + 742 x^{6} - 194 x^{5} + 1050 x^{4} - 160 x^{3} + 525 x^{2} - 188 x + 101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25775033599853515625=5^{15}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2849546394291799} a^{15} + \frac{450833114939617}{2849546394291799} a^{14} + \frac{942796081457784}{2849546394291799} a^{13} + \frac{622321412240372}{2849546394291799} a^{12} + \frac{4029329991832}{2849546394291799} a^{11} + \frac{1021751011932101}{2849546394291799} a^{10} - \frac{1401825168773951}{2849546394291799} a^{9} + \frac{421451620975565}{2849546394291799} a^{8} - \frac{1173102383814311}{2849546394291799} a^{7} + \frac{1347477920537214}{2849546394291799} a^{6} - \frac{1372567747710374}{2849546394291799} a^{5} - \frac{633710166672831}{2849546394291799} a^{4} + \frac{1023847003319098}{2849546394291799} a^{3} - \frac{922919320228417}{2849546394291799} a^{2} + \frac{1362805676128233}{2849546394291799} a - \frac{667548820117511}{2849546394291799}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1623414467504}{46713875316259} a^{15} - \frac{3568078622185}{46713875316259} a^{14} + \frac{6901556238166}{46713875316259} a^{13} - \frac{18673069512739}{46713875316259} a^{12} + \frac{52051278965224}{46713875316259} a^{11} - \frac{54075277989015}{46713875316259} a^{10} + \frac{129708719191567}{46713875316259} a^{9} - \frac{200254721818583}{46713875316259} a^{8} + \frac{174010185031809}{46713875316259} a^{7} - \frac{122991709537597}{46713875316259} a^{6} + \frac{468666038035639}{46713875316259} a^{5} + \frac{423627873228145}{46713875316259} a^{4} + \frac{446582397850465}{46713875316259} a^{3} + \frac{346365069050874}{46713875316259} a^{2} - \frac{37571190890835}{46713875316259} a + \frac{72615556163335}{46713875316259} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3277.2609029 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||