Normalized defining polynomial
\( x^{16} - x^{15} - 10 x^{14} + 5 x^{13} + 45 x^{12} - 8 x^{11} - 57 x^{10} + 20 x^{9} + 20 x^{7} + 398 x^{6} + 357 x^{5} + 360 x^{4} + 375 x^{3} + 175 x^{2} + 24 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25775033599853515625=5^{15}\cdot 61^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1831137652609575539} a^{15} - \frac{727678615321459900}{1831137652609575539} a^{14} - \frac{669596247228142647}{1831137652609575539} a^{13} + \frac{426226666879168031}{1831137652609575539} a^{12} - \frac{855585924149264691}{1831137652609575539} a^{11} - \frac{885368273596281936}{1831137652609575539} a^{10} - \frac{149651601543984516}{1831137652609575539} a^{9} + \frac{859934124698071668}{1831137652609575539} a^{8} - \frac{337020325283341007}{1831137652609575539} a^{7} - \frac{462682761521921499}{1831137652609575539} a^{6} + \frac{406298134464916576}{1831137652609575539} a^{5} + \frac{440034146320605377}{1831137652609575539} a^{4} + \frac{581006206276120218}{1831137652609575539} a^{3} + \frac{77413577228227970}{1831137652609575539} a^{2} + \frac{778631047584069821}{1831137652609575539} a - \frac{645060815323954518}{1831137652609575539}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5523291253295359}{5532137923291769} a^{15} + \frac{6174072215399641}{5532137923291769} a^{14} + \frac{54446012257468171}{5532137923291769} a^{13} - \frac{33908891288381568}{5532137923291769} a^{12} - \frac{244031669419491649}{5532137923291769} a^{11} + \frac{72012641964992758}{5532137923291769} a^{10} + \frac{304048590376967691}{5532137923291769} a^{9} - \frac{142861673355958840}{5532137923291769} a^{8} + \frac{19624763197137523}{5532137923291769} a^{7} - \frac{118491971936640404}{5532137923291769} a^{6} - \frac{2184049508609182335}{5532137923291769} a^{5} - \frac{1713469722702580419}{5532137923291769} a^{4} - \frac{1807188883187045413}{5532137923291769} a^{3} - \frac{1857024294207404847}{5532137923291769} a^{2} - \frac{750621425069824649}{5532137923291769} a - \frac{51009580557978530}{5532137923291769} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3374.49345422 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |