Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} - 16 x^{13} + 29 x^{12} - 16 x^{11} + 136 x^{10} - 44 x^{9} - 116 x^{8} - 528 x^{7} - 540 x^{6} + 416 x^{5} + 2832 x^{4} + 8544 x^{3} + 11760 x^{2} + 7296 x + 1736 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2572334856578604912869376=2^{32}\cdot 3^{4}\cdot 17^{4}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{12} - \frac{1}{28} a^{11} - \frac{1}{14} a^{10} - \frac{1}{4} a^{8} - \frac{1}{14} a^{7} + \frac{3}{14} a^{6} - \frac{3}{14} a^{5} + \frac{3}{14} a^{4} - \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{112} a^{14} - \frac{1}{56} a^{13} + \frac{1}{16} a^{12} - \frac{1}{14} a^{11} - \frac{3}{28} a^{10} - \frac{1}{4} a^{9} + \frac{3}{28} a^{8} + \frac{1}{14} a^{7} - \frac{3}{28} a^{6} - \frac{1}{7} a^{5} + \frac{1}{14} a^{4} + \frac{3}{7} a^{3} + \frac{3}{14} a^{2} - \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{10115594611933673968} a^{15} - \frac{22893154584395281}{10115594611933673968} a^{14} + \frac{16071778783515397}{10115594611933673968} a^{13} + \frac{181669278351675539}{10115594611933673968} a^{12} - \frac{156639525248767023}{2528898652983418492} a^{11} - \frac{199559914934458391}{2528898652983418492} a^{10} - \frac{124882865962690089}{1264449326491709246} a^{9} - \frac{18787530926378141}{2528898652983418492} a^{8} - \frac{282943392509465867}{2528898652983418492} a^{7} - \frac{1745540870073679}{361271236140488356} a^{6} - \frac{519676710106156681}{1264449326491709246} a^{5} - \frac{131097512573219735}{1264449326491709246} a^{4} + \frac{555633903813638711}{1264449326491709246} a^{3} - \frac{292713823123171865}{1264449326491709246} a^{2} + \frac{143110729641334741}{1264449326491709246} a - \frac{77045986072723451}{180635618070244178}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 111205.735644 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4^2.C_2$ (as 16T602):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2\times D_4^2.C_2$ |
| Character table for $C_2\times D_4^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.6208.2, 4.4.4352.1, 4.0.422144.3, 8.0.5896507392.1, 8.0.94344118272.1, 8.0.178205556736.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |