Normalized defining polynomial
\( x^{16} - x^{15} + 1604 x^{14} - 4849 x^{13} + 851534 x^{12} - 3460136 x^{11} + 220867782 x^{10} - 1005651829 x^{9} + 31950552532 x^{8} - 149369605348 x^{7} + 2679277607936 x^{6} - 11993916195144 x^{5} + 125839435016506 x^{4} - 486125527533824 x^{3} + 2817137139500788 x^{2} - 7283791516402294 x + 16052774378388739 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(257142839682757276401140868988052161101602113=67^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $596.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(6499=67\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{6499}(1408,·)$, $\chi_{6499}(1,·)$, $\chi_{6499}(1540,·)$, $\chi_{6499}(1473,·)$, $\chi_{6499}(5964,·)$, $\chi_{6499}(269,·)$, $\chi_{6499}(1810,·)$, $\chi_{6499}(4823,·)$, $\chi_{6499}(5828,·)$, $\chi_{6499}(604,·)$, $\chi_{6499}(803,·)$, $\chi_{6499}(872,·)$, $\chi_{6499}(4086,·)$, $\chi_{6499}(6297,·)$, $\chi_{6499}(4153,·)$, $\chi_{6499}(5562,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{113} a^{14} - \frac{14}{113} a^{13} + \frac{27}{113} a^{12} - \frac{10}{113} a^{11} - \frac{50}{113} a^{10} - \frac{29}{113} a^{9} - \frac{23}{113} a^{8} + \frac{41}{113} a^{7} - \frac{22}{113} a^{6} - \frac{31}{113} a^{5} + \frac{22}{113} a^{4} - \frac{49}{113} a^{3} + \frac{36}{113} a^{2} + \frac{24}{113} a - \frac{41}{113}$, $\frac{1}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{15} - \frac{17082141173943938753955907186515266943104367666886009641371306150654575259588662627775819340195764063790331}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{14} - \frac{2778349787130724595025988839864201269123578589134404236903423797253931348665491913777479760386518797662175083}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{13} - \frac{4070459519676662225147577612456413790452648729652126791639415452714576312795687280274480716321186286710873612}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{12} - \frac{4099244038555276147812045333506965701089518518598866589242968889374589406563902954753519131017893952524303556}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{11} + \frac{2136839911531152334150507422565198544543642860187514536489345409752770964264699994442981606710878561888572108}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{10} + \frac{641527553028875293713849454111267482605820169723196074331519043060810324812755734582724398097360312764576817}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{9} + \frac{2372110915230886156241676596487060830012643029472257175154387561484320953153374720877883488741320480015367800}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{8} - \frac{1908127116156292798010481740380693730521264604453804916118434228225192444709445802183952408188612929426086827}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{7} - \frac{9122543616293737113870912837960283211124332096097419811206893064899182425566958200580332710992832542759878}{21246216253521976559797112844458937487469539689032124944640410980407326131792007648724120902228054126800717} a^{6} + \frac{2726111081240168583426185587093196035591278486691521432512052371745907620511894223750569434331399162795247029}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{5} + \frac{10043275358760533281462483475126001928549896887210862342996690875124257427911796357688590920902154105151849}{73139629403717246741248468110571032589607530433924748703231149304234069604133548454457371955457637657747601} a^{4} + \frac{630705904297892412050154837373320467730722542889931173268743604313640393905496538123456405987882692244086840}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{3} - \frac{3938699259543020395363105436555527097273264382470349396537726739188170329806696532407603268004664080708506938}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a^{2} - \frac{295621777784487898788026824526776936660540884236746079201955841517210485920723537262698856988975578536452952}{8264778122620048881761076896494526682625650939033496603465119871378449865267090975353683030966713055325478913} a + \frac{1098862412210239299348402678862083973055253427879758071507233715113347831034872891993527141403334672186923}{6372226771488087032969218887042811628855551996170776101360925112859252016397140304821652298355214383442929}$
Class group and class number
$C_{1073881378}$, which has order $1073881378$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1675810.87182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||
| 97 | Data not computed | ||||||