Normalized defining polynomial
\( x^{16} - 4 x^{15} + 38 x^{14} - 130 x^{13} + 641 x^{12} - 1757 x^{11} + 5897 x^{10} - 12483 x^{9} + 31044 x^{8} - 47785 x^{7} + 91545 x^{6} - 91886 x^{5} + 136834 x^{4} - 79970 x^{3} + 96634 x^{2} - 49215 x + 85039 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2569453321037674837093389=3^{10}\cdot 61^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{34515560325784499630027734247120551} a^{15} + \frac{5821280831974452921734694042193750}{34515560325784499630027734247120551} a^{14} - \frac{13443076130736492010280738572360211}{34515560325784499630027734247120551} a^{13} + \frac{6178672956150397272284559239152078}{34515560325784499630027734247120551} a^{12} + \frac{12434658858349680433202441318317020}{34515560325784499630027734247120551} a^{11} - \frac{9935084274029835665567172390233656}{34515560325784499630027734247120551} a^{10} - \frac{9878010947954180467641957101156998}{34515560325784499630027734247120551} a^{9} - \frac{12626987282361013080479921585441443}{34515560325784499630027734247120551} a^{8} - \frac{82958320477997128342407719226866}{34515560325784499630027734247120551} a^{7} - \frac{27552513154274392858476590631008}{34515560325784499630027734247120551} a^{6} - \frac{3665780645704220862366788070440645}{34515560325784499630027734247120551} a^{5} + \frac{10412425782209206921641926788080808}{34515560325784499630027734247120551} a^{4} - \frac{16676176849206518996205890608296205}{34515560325784499630027734247120551} a^{3} + \frac{4964979462268394368346248191465752}{34515560325784499630027734247120551} a^{2} - \frac{16681359139417630686654150632414888}{34515560325784499630027734247120551} a + \frac{5335052482325217792890671017973824}{34515560325784499630027734247120551}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{34387595095099780}{6901354070863061670877} a^{15} - \frac{232327293607026785}{6901354070863061670877} a^{14} + \frac{1415826861757443400}{6901354070863061670877} a^{13} - \frac{6913417440976917510}{6901354070863061670877} a^{12} + \frac{24653663963740767175}{6901354070863061670877} a^{11} - \frac{86796530147784447528}{6901354070863061670877} a^{10} + \frac{216141575917438506770}{6901354070863061670877} a^{9} - \frac{567310675895822987190}{6901354070863061670877} a^{8} + \frac{953703551823596720587}{6901354070863061670877} a^{7} - \frac{1887265927409504101444}{6901354070863061670877} a^{6} + \frac{1560268796062567141682}{6901354070863061670877} a^{5} - \frac{2632517943441198492412}{6901354070863061670877} a^{4} - \frac{1925019492910097756340}{6901354070863061670877} a^{3} - \frac{851210500749777478608}{6901354070863061670877} a^{2} - \frac{4145091270211868892536}{6901354070863061670877} a + \frac{1951142008569674591775}{6901354070863061670877} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 302344.361334 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.549.1, 8.0.18385461.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.2.2 | $x^{4} - 61 x^{2} + 7442$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |