Properties

Label 16.0.25659425051...3125.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 101^{5}$
Root discriminant $14.14$
Ramified primes $5, 101$
Class number $2$
Class group $[2]$
Galois group 16T1281

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -7, 22, -52, 113, -197, 280, -375, 431, -375, 280, -197, 113, -52, 22, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 22*x^14 - 52*x^13 + 113*x^12 - 197*x^11 + 280*x^10 - 375*x^9 + 431*x^8 - 375*x^7 + 280*x^6 - 197*x^5 + 113*x^4 - 52*x^3 + 22*x^2 - 7*x + 1)
 
gp: K = bnfinit(x^16 - 7*x^15 + 22*x^14 - 52*x^13 + 113*x^12 - 197*x^11 + 280*x^10 - 375*x^9 + 431*x^8 - 375*x^7 + 280*x^6 - 197*x^5 + 113*x^4 - 52*x^3 + 22*x^2 - 7*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 22 x^{14} - 52 x^{13} + 113 x^{12} - 197 x^{11} + 280 x^{10} - 375 x^{9} + 431 x^{8} - 375 x^{7} + 280 x^{6} - 197 x^{5} + 113 x^{4} - 52 x^{3} + 22 x^{2} - 7 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2565942505126953125=5^{12}\cdot 101^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{55} a^{14} - \frac{1}{55} a^{12} - \frac{3}{11} a^{11} - \frac{24}{55} a^{10} - \frac{9}{55} a^{9} - \frac{1}{55} a^{8} - \frac{21}{55} a^{7} + \frac{21}{55} a^{6} - \frac{9}{55} a^{5} + \frac{4}{11} a^{4} - \frac{26}{55} a^{3} + \frac{2}{11} a^{2} + \frac{1}{5} a - \frac{2}{11}$, $\frac{1}{275} a^{15} + \frac{2}{275} a^{14} + \frac{2}{55} a^{13} - \frac{17}{275} a^{12} + \frac{9}{55} a^{11} + \frac{108}{275} a^{10} + \frac{47}{275} a^{9} - \frac{12}{275} a^{8} + \frac{78}{275} a^{7} - \frac{8}{25} a^{6} - \frac{42}{275} a^{5} - \frac{17}{55} a^{4} + \frac{123}{275} a^{3} - \frac{18}{55} a^{2} + \frac{67}{275} a - \frac{64}{275}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1752}{55} a^{15} + \frac{11393}{55} a^{14} - \frac{32887}{55} a^{13} + \frac{74793}{55} a^{12} - \frac{160879}{55} a^{11} + \frac{24121}{5} a^{10} - \frac{358999}{55} a^{9} + \frac{43541}{5} a^{8} - \frac{47036}{5} a^{7} + \frac{400309}{55} a^{6} - \frac{26526}{5} a^{5} + \frac{199734}{55} a^{4} - \frac{98413}{55} a^{3} + \frac{42012}{55} a^{2} - \frac{17438}{55} a + \frac{3517}{55} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1225.57100774 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1281:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1281
Character table for t16n1281 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.159390625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$101$101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$
101.4.3.4$x^{4} + 808$$4$$1$$3$$C_4$$[\ ]_{4}$