Normalized defining polynomial
\( x^{16} - 2 x^{15} - 15 x^{14} + 80 x^{13} + 2 x^{12} - 494 x^{11} + 590 x^{10} + 590 x^{9} + 6773 x^{8} - 30706 x^{7} + 62980 x^{6} - 59650 x^{5} + 40752 x^{4} - 13132 x^{3} + 11617 x^{2} + 414 x + 529 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25576314038393241600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{29} a^{11} + \frac{10}{29} a^{10} - \frac{13}{29} a^{9} + \frac{1}{29} a^{8} - \frac{6}{29} a^{7} - \frac{4}{29} a^{6} - \frac{10}{29} a^{5} - \frac{6}{29} a^{4} - \frac{4}{29} a^{3} - \frac{1}{29} a^{2} - \frac{7}{29} a + \frac{10}{29}$, $\frac{1}{58} a^{12} - \frac{13}{29} a^{10} - \frac{7}{29} a^{9} + \frac{13}{58} a^{8} - \frac{1}{29} a^{7} + \frac{1}{58} a^{6} - \frac{11}{29} a^{5} + \frac{27}{58} a^{4} + \frac{5}{29} a^{3} - \frac{13}{29} a^{2} + \frac{11}{29} a - \frac{13}{58}$, $\frac{1}{58} a^{13} + \frac{7}{29} a^{10} + \frac{23}{58} a^{9} + \frac{12}{29} a^{8} + \frac{19}{58} a^{7} - \frac{5}{29} a^{6} - \frac{1}{58} a^{5} + \frac{14}{29} a^{4} - \frac{7}{29} a^{3} - \frac{2}{29} a^{2} - \frac{21}{58} a + \frac{14}{29}$, $\frac{1}{1682} a^{14} + \frac{5}{1682} a^{13} - \frac{7}{841} a^{12} - \frac{7}{841} a^{11} + \frac{61}{1682} a^{10} + \frac{293}{1682} a^{9} + \frac{45}{1682} a^{8} - \frac{763}{1682} a^{7} - \frac{185}{1682} a^{6} + \frac{263}{1682} a^{5} + \frac{277}{841} a^{4} + \frac{239}{841} a^{3} + \frac{351}{1682} a^{2} - \frac{131}{1682} a - \frac{124}{841}$, $\frac{1}{410944782862578631551061016314} a^{15} + \frac{92269415219434728556603029}{410944782862578631551061016314} a^{14} + \frac{1225180315915409979823720980}{205472391431289315775530508157} a^{13} - \frac{717253598765022766914749216}{205472391431289315775530508157} a^{12} - \frac{3075058389936118172772369457}{410944782862578631551061016314} a^{11} + \frac{113240021244685927464319095985}{410944782862578631551061016314} a^{10} - \frac{80384959206066991308888574523}{410944782862578631551061016314} a^{9} - \frac{5079638574778530329189355417}{14170509753882021777622793666} a^{8} + \frac{157204281913887856504350567797}{410944782862578631551061016314} a^{7} + \frac{152240194078873723369676177}{366587674275270857761874234} a^{6} - \frac{69046713200298059313543604156}{205472391431289315775530508157} a^{5} - \frac{98469297143119362584552549838}{205472391431289315775530508157} a^{4} - \frac{3093394176855093070282934311}{14170509753882021777622793666} a^{3} - \frac{1020388658146703268366275409}{21628672782240980607950579806} a^{2} - \frac{34033740618813032362976277314}{205472391431289315775530508157} a + \frac{2937522416141299729456448201}{8933582236143013729370891659}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181341.233613 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{6}) \), 4.0.6525.1, 4.0.46400.1, 4.4.83520.1, 4.4.83520.2, \(\Q(\sqrt{5}, \sqrt{6})\), 8.8.174389760000.2, 8.0.174389760000.2, 8.0.174389760000.15 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |