Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 48 x^{13} + 157 x^{12} - 272 x^{11} + 474 x^{10} - 844 x^{9} + 398 x^{8} + 2536 x^{7} + 12568 x^{6} + 7572 x^{5} + 1049 x^{4} + 9020 x^{3} + 34230 x^{2} + 32200 x + 8875 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25576314038393241600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{7} - \frac{1}{2} a^{5} - \frac{2}{5} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{8} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{20} a^{13} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{4} a$, $\frac{1}{200} a^{14} + \frac{1}{50} a^{13} - \frac{1}{40} a^{12} - \frac{1}{25} a^{11} - \frac{1}{100} a^{10} - \frac{1}{25} a^{9} - \frac{1}{50} a^{7} + \frac{3}{100} a^{6} - \frac{19}{50} a^{5} - \frac{1}{20} a^{4} + \frac{9}{25} a^{3} + \frac{11}{40} a^{2} - \frac{3}{10} a + \frac{3}{8}$, $\frac{1}{313199123324421213824666200} a^{15} + \frac{144558508326456547424169}{313199123324421213824666200} a^{14} - \frac{1243818342790170625535217}{62639824664884242764933240} a^{13} + \frac{5421826675290610242922117}{313199123324421213824666200} a^{12} - \frac{4820647638882472886056631}{156599561662210606912333100} a^{11} + \frac{5524276324549949724660621}{156599561662210606912333100} a^{10} + \frac{76553725250862845882681}{15659956166221060691233310} a^{9} + \frac{11916559432694344610154429}{78299780831105303456166550} a^{8} + \frac{619119080321538875861361}{2954708710607747300232700} a^{7} + \frac{36514107813836181488671317}{156599561662210606912333100} a^{6} - \frac{690075686056086391219269}{6263982466488424276493324} a^{5} + \frac{17071941815811878846927501}{156599561662210606912333100} a^{4} - \frac{3050559852115134622432969}{62639824664884242764933240} a^{3} + \frac{28165577023508351377792963}{62639824664884242764933240} a^{2} - \frac{5804222350426137762049637}{12527964932976848552986648} a - \frac{4575974468468280248093127}{12527964932976848552986648}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 187751.023506 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T34):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{6}) \), 4.0.46400.1, 4.0.6525.1, 4.0.83520.3, \(\Q(\sqrt{5}, \sqrt{6})\), 4.0.83520.4, 8.0.174389760000.18, 8.0.174389760000.15, 8.8.174389760000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |