Properties

Label 16.0.25554788874...0409.5
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 37^{10}$
Root discriminant $21.78$
Ramified primes $3, 37$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1849, 0, 6329, 0, 8179, 0, 5054, 0, 1561, 0, 215, 0, 19, 0, 2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 2*x^14 + 19*x^12 + 215*x^10 + 1561*x^8 + 5054*x^6 + 8179*x^4 + 6329*x^2 + 1849)
 
gp: K = bnfinit(x^16 + 2*x^14 + 19*x^12 + 215*x^10 + 1561*x^8 + 5054*x^6 + 8179*x^4 + 6329*x^2 + 1849, 1)
 

Normalized defining polynomial

\( x^{16} + 2 x^{14} + 19 x^{12} + 215 x^{10} + 1561 x^{8} + 5054 x^{6} + 8179 x^{4} + 6329 x^{2} + 1849 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2555478887462114090409=3^{12}\cdot 37^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{7} + \frac{1}{6} a^{5} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{66} a^{12} - \frac{1}{33} a^{10} - \frac{17}{66} a^{6} - \frac{16}{33} a^{4} - \frac{4}{11} a^{2} - \frac{1}{2} a - \frac{4}{11}$, $\frac{1}{66} a^{13} - \frac{1}{33} a^{11} - \frac{17}{66} a^{7} - \frac{16}{33} a^{5} - \frac{4}{11} a^{3} - \frac{1}{2} a^{2} - \frac{4}{11} a$, $\frac{1}{141185286} a^{14} + \frac{275114}{70592643} a^{12} + \frac{198654}{7843627} a^{10} - \frac{4553354}{70592643} a^{8} + \frac{59470979}{141185286} a^{6} - \frac{1}{2} a^{5} - \frac{2682673}{15687254} a^{4} - \frac{1}{2} a^{3} - \frac{6186481}{12835026} a^{2} - \frac{1}{2} a - \frac{32460767}{141185286}$, $\frac{1}{6070967298} a^{15} - \frac{12559912}{3035483649} a^{13} - \frac{20912843}{2023655766} a^{11} + \frac{2630257}{70592643} a^{9} - \frac{1198361569}{6070967298} a^{7} - \frac{1}{2} a^{6} + \frac{419175320}{1011827883} a^{5} - \frac{1}{2} a^{4} - \frac{1193255237}{6070967298} a^{3} - \frac{1}{2} a^{2} - \frac{2098899953}{6070967298} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{58031}{713057} a^{14} + \frac{191938}{2139171} a^{12} + \frac{1046533}{713057} a^{10} + \frac{11536659}{713057} a^{8} + \frac{240765806}{2139171} a^{6} + \frac{221514685}{713057} a^{4} + \frac{277276117}{713057} a^{2} + \frac{364131010}{2139171} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7247.21826494 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.333.1, 8.0.4102893.1, 8.0.50551744653.2, 8.0.1366263369.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
3.8.6.2$x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$37$37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.4.2.1$x^{4} + 333 x^{2} + 34225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.8.6.1$x^{8} - 1147 x^{4} + 855625$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$