Normalized defining polynomial
\( x^{16} - x^{15} + 15 x^{14} - 31 x^{13} + 124 x^{12} - 279 x^{11} + 693 x^{10} - 1296 x^{9} + 2397 x^{8} - 3348 x^{7} + 4419 x^{6} - 4131 x^{5} + 3186 x^{4} - 324 x^{3} - 972 x^{2} - 729 x + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2555478887462114090409=3^{12}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{2}{27} a^{9} - \frac{2}{27} a^{8} - \frac{4}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{9} a^{9} + \frac{4}{27} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{13} + \frac{2}{81} a^{11} - \frac{2}{81} a^{10} - \frac{4}{27} a^{9} + \frac{1}{27} a^{8} + \frac{1}{9} a^{7} - \frac{8}{27} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{470280248330575419} a^{15} + \frac{2327072792398796}{470280248330575419} a^{14} + \frac{3803212873753}{156760082776858473} a^{13} - \frac{4710140011363414}{470280248330575419} a^{12} - \frac{871495038458773}{42752749848234129} a^{11} - \frac{290068938621071}{156760082776858473} a^{10} + \frac{494254140000656}{17417786975206497} a^{9} + \frac{4792108088244274}{52253360925619491} a^{8} - \frac{12802717236271682}{156760082776858473} a^{7} - \frac{11631039638577164}{52253360925619491} a^{6} - \frac{25850176795223926}{52253360925619491} a^{5} - \frac{661647551199034}{5805928991735499} a^{4} - \frac{3218302807508201}{17417786975206497} a^{3} + \frac{331066601376889}{1935309663911833} a^{2} - \frac{749567845308923}{1935309663911833} a + \frac{542247619313597}{1935309663911833}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{40115937572}{17807575005891} a^{15} - \frac{13167989095}{17807575005891} a^{14} + \frac{594064940792}{17807575005891} a^{13} - \frac{850985301569}{17807575005891} a^{12} + \frac{402805705061}{1618870455081} a^{11} - \frac{8320256871350}{17807575005891} a^{10} + \frac{7534119932597}{5935858335297} a^{9} - \frac{1398969721465}{659539815033} a^{8} + \frac{24495414544313}{5935858335297} a^{7} - \frac{30184263512378}{5935858335297} a^{6} + \frac{1575204576139}{219846605011} a^{5} - \frac{10868286226390}{1978619445099} a^{4} + \frac{3297898235777}{659539815033} a^{3} + \frac{781540102837}{659539815033} a^{2} - \frac{26162374961}{219846605011} a - \frac{343863337069}{219846605011} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21312.5774141 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-111}) \), 4.2.4107.1 x2, 4.0.333.1 x2, \(\Q(\sqrt{-3}, \sqrt{37})\), 8.0.36926037.1, 8.0.50551744653.2, 8.0.151807041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 37 | Data not computed | ||||||