Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 78 x^{13} + 130 x^{12} - 166 x^{11} + 268 x^{10} - 514 x^{9} + 565 x^{8} - 540 x^{7} - 202 x^{6} + 1084 x^{5} + 85 x^{4} + 444 x^{3} + 1221 x^{2} + 666 x + 111 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2555478887462114090409=3^{12}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{42} a^{13} + \frac{1}{42} a^{12} + \frac{4}{21} a^{11} + \frac{1}{21} a^{10} + \frac{3}{14} a^{9} + \frac{3}{14} a^{8} - \frac{13}{42} a^{7} + \frac{4}{21} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{2394} a^{14} + \frac{10}{1197} a^{13} - \frac{1}{42} a^{12} - \frac{17}{342} a^{11} + \frac{223}{1197} a^{10} - \frac{17}{798} a^{9} - \frac{299}{1197} a^{8} + \frac{311}{1197} a^{7} - \frac{185}{798} a^{6} - \frac{91}{342} a^{5} + \frac{169}{342} a^{4} - \frac{1}{42} a^{3} - \frac{134}{399} a^{2} + \frac{187}{798} a - \frac{16}{399}$, $\frac{1}{117689728620782178} a^{15} + \frac{11470158425615}{117689728620782178} a^{14} - \frac{208364600986285}{19614954770130363} a^{13} - \frac{1832888091759748}{58844864310391089} a^{12} + \frac{14212235601956465}{117689728620782178} a^{11} + \frac{604806680695531}{39229909540260726} a^{10} - \frac{8841487158538652}{58844864310391089} a^{9} - \frac{195982460543071}{3097098121599531} a^{8} + \frac{4048247900478802}{19614954770130363} a^{7} - \frac{6760324329936295}{117689728620782178} a^{6} + \frac{323101079608945}{884885177599866} a^{5} + \frac{1899759870058135}{19614954770130363} a^{4} - \frac{5782546456070977}{39229909540260726} a^{3} - \frac{3966689750411447}{39229909540260726} a^{2} + \frac{7086039828312223}{39229909540260726} a + \frac{1390313391683459}{6538318256710121}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{29307892456}{986651201529} a^{15} - \frac{82456597487}{328883733843} a^{14} + \frac{1048469024840}{986651201529} a^{13} - \frac{5520653047591}{1973302403058} a^{12} + \frac{3383118459211}{657767467686} a^{11} - \frac{14436526854047}{1973302403058} a^{10} + \frac{22484806508203}{1973302403058} a^{9} - \frac{6773284311190}{328883733843} a^{8} + \frac{52110837920273}{1973302403058} a^{7} - \frac{4033606006435}{140950171647} a^{6} + \frac{719033291315}{93966781098} a^{5} + \frac{27156090258826}{986651201529} a^{4} - \frac{6014111051743}{657767467686} a^{3} + \frac{3846996005777}{219255822562} a^{2} + \frac{9426403618505}{328883733843} a + \frac{785342047499}{93966781098} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34293.5127133 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{37}) \), 4.2.4107.1 x2, 4.0.333.1 x2, \(\Q(\sqrt{-3}, \sqrt{37})\), 8.0.151807041.1, 8.0.1366263369.1 x2, 8.0.50551744653.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 37 | Data not computed | ||||||