Normalized defining polynomial
\( x^{16} - 2 x^{15} + 5 x^{14} + 92 x^{13} + 79 x^{12} + 288 x^{11} + 2668 x^{10} + 7938 x^{9} + 24209 x^{8} + 56768 x^{7} + 96471 x^{6} + 180066 x^{5} + 65135 x^{4} - 522598 x^{3} + 407384 x^{2} + 1365832 x + 1430416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2507625255850803120915676947241=11^{12}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{368} a^{10} + \frac{3}{368} a^{9} - \frac{1}{184} a^{8} + \frac{3}{184} a^{7} - \frac{9}{92} a^{6} + \frac{37}{184} a^{5} + \frac{49}{368} a^{4} - \frac{71}{368} a^{3} + \frac{5}{46} a^{2} - \frac{4}{23} a - \frac{1}{2}$, $\frac{1}{736} a^{11} + \frac{35}{736} a^{9} - \frac{17}{368} a^{8} - \frac{1}{92} a^{7} - \frac{1}{368} a^{6} + \frac{149}{736} a^{5} + \frac{13}{92} a^{4} - \frac{15}{32} a^{3} + \frac{1}{8} a^{2} - \frac{11}{46} a - \frac{1}{4}$, $\frac{1}{8096} a^{12} - \frac{1}{2024} a^{11} - \frac{5}{8096} a^{10} - \frac{147}{4048} a^{9} + \frac{3}{1012} a^{8} - \frac{105}{4048} a^{7} - \frac{243}{8096} a^{6} - \frac{311}{2024} a^{5} - \frac{1985}{8096} a^{4} + \frac{401}{1012} a^{3} + \frac{215}{1012} a^{2} + \frac{35}{92} a - \frac{1}{11}$, $\frac{1}{32384} a^{13} + \frac{1}{32384} a^{12} - \frac{3}{32384} a^{11} + \frac{3}{2944} a^{10} - \frac{411}{8096} a^{9} - \frac{265}{16192} a^{8} + \frac{2667}{32384} a^{7} - \frac{4043}{32384} a^{6} + \frac{5941}{32384} a^{5} - \frac{5397}{32384} a^{4} - \frac{5893}{16192} a^{3} - \frac{29}{88} a^{2} + \frac{1569}{4048} a - \frac{43}{88}$, $\frac{1}{1683968} a^{14} - \frac{9}{841984} a^{13} - \frac{3}{841984} a^{12} + \frac{497}{841984} a^{11} - \frac{2175}{1683968} a^{10} - \frac{16347}{841984} a^{9} - \frac{2795}{129536} a^{8} + \frac{45541}{420992} a^{7} - \frac{8383}{76544} a^{6} + \frac{29057}{420992} a^{5} - \frac{11031}{129536} a^{4} - \frac{279765}{841984} a^{3} - \frac{52761}{210496} a^{2} - \frac{50357}{210496} a - \frac{119}{352}$, $\frac{1}{2285522430619451187946496} a^{15} + \frac{545980724905552711}{2285522430619451187946496} a^{14} - \frac{248634743332528183}{35711287978428924811664} a^{13} + \frac{1812498750436585571}{51943691604987526998784} a^{12} + \frac{1214071828970610364907}{2285522430619451187946496} a^{11} + \frac{2047439181075368251003}{2285522430619451187946496} a^{10} + \frac{1019452430557504770183}{175809417739957783688192} a^{9} - \frac{121636241301725446944627}{2285522430619451187946496} a^{8} + \frac{102712170672657521203809}{1142761215309725593973248} a^{7} - \frac{3039478645387759172777}{49685270230857634520576} a^{6} + \frac{13845904733631738571541}{175809417739957783688192} a^{5} + \frac{368889352557946896349963}{2285522430619451187946496} a^{4} + \frac{564881248926394576239087}{1142761215309725593973248} a^{3} - \frac{52466531271232653357527}{142845151913715699246656} a^{2} - \frac{39676617049676932621}{955485965978031433088} a + \frac{682286245786865491}{1597802618692360256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4701685160.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{209}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-11}, \sqrt{-19})\), 4.2.829939.1 x2, 4.0.75449.1 x2, 8.0.688798743721.1, 8.2.1583548311814579.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 19 | Data not computed | ||||||