Properties

Label 16.0.250...656.1
Degree $16$
Signature $[0, 8]$
Discriminant $2.505\times 10^{23}$
Root discriminant \(29.00\)
Ramified primes $2,3,17$
Class number $20$ (GRH)
Class group [20] (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1)
 
gp: K = bnfinit(y^16 - 13*y^14 + 129*y^12 - 494*y^10 + 1430*y^8 - 494*y^6 + 129*y^4 - 13*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1)
 

\( x^{16} - 13x^{14} + 129x^{12} - 494x^{10} + 1430x^{8} - 494x^{6} + 129x^{4} - 13x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(250516897691366976454656\) \(\medspace = 2^{16}\cdot 3^{8}\cdot 17^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(29.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}17^{3/4}\approx 29.001957651613843$
Ramified primes:   \(2\), \(3\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(204=2^{2}\cdot 3\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(67,·)$, $\chi_{204}(137,·)$, $\chi_{204}(203,·)$, $\chi_{204}(13,·)$, $\chi_{204}(149,·)$, $\chi_{204}(89,·)$, $\chi_{204}(157,·)$, $\chi_{204}(35,·)$, $\chi_{204}(101,·)$, $\chi_{204}(103,·)$, $\chi_{204}(169,·)$, $\chi_{204}(47,·)$, $\chi_{204}(115,·)$, $\chi_{204}(55,·)$, $\chi_{204}(191,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{8}a^{6}-\frac{3}{8}$, $\frac{1}{8}a^{7}-\frac{3}{8}a$, $\frac{1}{8}a^{8}-\frac{3}{8}a^{2}$, $\frac{1}{8}a^{9}-\frac{3}{8}a^{3}$, $\frac{1}{8}a^{10}-\frac{3}{8}a^{4}$, $\frac{1}{8}a^{11}-\frac{3}{8}a^{5}$, $\frac{1}{1664}a^{12}-\frac{3}{64}a^{6}+\frac{545}{1664}$, $\frac{1}{1664}a^{13}-\frac{3}{64}a^{7}+\frac{545}{1664}a$, $\frac{1}{1664}a^{14}-\frac{3}{64}a^{8}+\frac{545}{1664}a^{2}$, $\frac{1}{1664}a^{15}-\frac{3}{64}a^{9}+\frac{545}{1664}a^{3}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $13$

Class group and class number

$C_{20}$, which has order $20$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{733}{1664} a^{15} + \frac{4817}{832} a^{13} - \frac{461}{8} a^{11} + \frac{14431}{64} a^{9} - \frac{21071}{32} a^{7} + \frac{2383}{8} a^{5} - \frac{98925}{1664} a^{3} + \frac{4985}{832} a \)  (order $12$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{625}{1664}a^{15}+\frac{87}{832}a^{14}-\frac{3961}{832}a^{13}-\frac{2247}{1664}a^{12}+\frac{375}{8}a^{11}+\frac{107}{8}a^{10}-\frac{10875}{64}a^{9}-\frac{1617}{32}a^{8}+\frac{15295}{32}a^{7}+\frac{9309}{64}a^{6}-\frac{125}{8}a^{5}-\frac{321}{8}a^{4}+\frac{2625}{1664}a^{3}+\frac{10911}{832}a^{2}+\frac{2895}{832}a-\frac{535}{1664}$, $\frac{331}{1664}a^{14}-\frac{1071}{416}a^{12}+\frac{51}{2}a^{10}-\frac{6185}{64}a^{8}+\frac{4437}{16}a^{6}-\frac{153}{2}a^{4}+\frac{7963}{1664}a^{2}-\frac{255}{416}$, $\frac{105}{1664}a^{14}-\frac{1331}{1664}a^{12}+\frac{63}{8}a^{10}-\frac{1827}{64}a^{8}+\frac{5137}{64}a^{6}-\frac{21}{8}a^{4}+\frac{441}{1664}a^{2}+\frac{733}{1664}$, $\frac{127}{104}a^{15}-\frac{6573}{416}a^{13}+\frac{313}{2}a^{11}-\frac{4743}{8}a^{9}+\frac{27231}{16}a^{7}-\frac{939}{2}a^{5}+\frac{2309}{52}a^{3}-\frac{1565}{416}a$, $\frac{853}{1664}a^{15}-\frac{15}{1664}a^{14}-\frac{11025}{1664}a^{13}+\frac{95}{832}a^{12}+\frac{525}{8}a^{11}-\frac{9}{8}a^{10}-\frac{15887}{64}a^{9}+\frac{261}{64}a^{8}+\frac{45675}{64}a^{7}-\frac{369}{32}a^{6}-\frac{1575}{8}a^{5}+\frac{3}{8}a^{4}+\frac{73429}{1664}a^{3}-\frac{3391}{1664}a^{2}-\frac{2625}{1664}a+\frac{87}{832}$, $\frac{2703}{1664}a^{15}+\frac{1589}{1664}a^{14}-\frac{2663}{128}a^{13}-\frac{10245}{832}a^{12}+\frac{411}{2}a^{11}+\frac{975}{8}a^{10}-\frac{48789}{64}a^{9}-\frac{29359}{64}a^{8}+\frac{138905}{64}a^{7}+\frac{42095}{32}a^{6}-\frac{725}{2}a^{5}-\frac{2621}{8}a^{4}+\frac{128415}{1664}a^{3}+\frac{116789}{1664}a^{2}+\frac{1225}{128}a-\frac{805}{832}$, $\frac{285}{832}a^{15}+\frac{479}{1664}a^{14}-\frac{3563}{832}a^{13}-\frac{6113}{1664}a^{12}+42a^{11}+\frac{145}{4}a^{10}-\frac{4723}{32}a^{9}-\frac{8541}{64}a^{8}+\frac{13101}{32}a^{7}+\frac{24235}{64}a^{6}+60a^{5}-\frac{191}{4}a^{4}+\frac{1925}{832}a^{3}+\frac{21439}{1664}a^{2}+\frac{2445}{832}a-\frac{881}{1664}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 165082.730127 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 165082.730127 \cdot 20}{12\cdot\sqrt{250516897691366976454656}}\cr\approx \mathstrut & 1.33527533427 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 13*x^14 + 129*x^12 - 494*x^10 + 1430*x^8 - 494*x^6 + 129*x^4 - 13*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_4$ (as 16T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{51}) \), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{17})\), \(\Q(i, \sqrt{51})\), \(\Q(\sqrt{-3}, \sqrt{17})\), \(\Q(\sqrt{-3}, \sqrt{-17})\), \(\Q(\sqrt{3}, \sqrt{17})\), \(\Q(\sqrt{3}, \sqrt{-17})\), 4.4.707472.1, 4.0.44217.1, 4.0.78608.1, 4.4.4913.1, 8.0.1731891456.1, 8.0.500516630784.2, 8.0.6179217664.1, 8.0.500516630784.3, 8.0.1955143089.1, 8.8.500516630784.1, 8.0.500516630784.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.1.0.1}{1} }^{16}$ R ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(17\) Copy content Toggle raw display 17.8.6.1$x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74840 x^{4} + 51968 x^{3} + 39432 x^{2} + 270464 x + 1062564$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17.8.6.1$x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74840 x^{4} + 51968 x^{3} + 39432 x^{2} + 270464 x + 1062564$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$