Normalized defining polynomial
\( x^{16} - 7 x^{15} + 218 x^{14} - 3065 x^{13} + 39881 x^{12} - 486437 x^{11} + 4721837 x^{10} - 45946626 x^{9} + 379919624 x^{8} - 2767976084 x^{7} + 17803648743 x^{6} - 93432130616 x^{5} + 431348541875 x^{4} - 1573313537696 x^{3} + 4687448410199 x^{2} - 11366868502319 x + 16797845967299 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(249686282242731792647174886492450339042241=37^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $386.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{124} a^{13} + \frac{3}{62} a^{12} - \frac{11}{124} a^{11} - \frac{3}{31} a^{10} + \frac{15}{124} a^{9} + \frac{29}{124} a^{8} - \frac{39}{124} a^{7} + \frac{15}{62} a^{6} + \frac{4}{31} a^{5} - \frac{25}{62} a^{4} - \frac{9}{31} a^{3} + \frac{1}{124} a^{2} - \frac{35}{124} a + \frac{23}{124}$, $\frac{1}{124} a^{14} + \frac{15}{124} a^{12} - \frac{2}{31} a^{11} + \frac{25}{124} a^{10} + \frac{1}{124} a^{9} - \frac{27}{124} a^{8} - \frac{23}{62} a^{7} - \frac{10}{31} a^{6} - \frac{11}{62} a^{5} - \frac{23}{62} a^{4} - \frac{1}{4} a^{3} - \frac{41}{124} a^{2} - \frac{15}{124} a + \frac{12}{31}$, $\frac{1}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{15} - \frac{4647329704954327096561029683488136434978879840328115113652793184353840947765494057}{1704941535163047910953561586619077778012957576840242454962072562672763776144840765558} a^{14} + \frac{56574813313244485687575181851562970330704483099551756994097317343033851840979653}{31868066077813979643991805357365939775943132277387709438543412386406799554109173188} a^{13} - \frac{181587478948304740656852936324617428634779594281319053813542961444386248979711835391}{1704941535163047910953561586619077778012957576840242454962072562672763776144840765558} a^{12} + \frac{190133783943227396285760919131687414710479100683526032194653471361600673904003086853}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{11} - \frac{606104010610883463926596711868770273288384481230553782957891596612365476095062714875}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{10} - \frac{635371363819115075642836112124907073483486539799630938871951755388600116986276483625}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{9} + \frac{142606122226660710027681822960043487206171540270079090100264519607153050602216982669}{852470767581523955476780793309538889006478788420121227481036281336381888072420382779} a^{8} + \frac{73647074051364520807486679452270940453602201079650406793046952005844691073384606193}{852470767581523955476780793309538889006478788420121227481036281336381888072420382779} a^{7} + \frac{842696755076341319439638733398660553941865263771783559180376324041749730218201741887}{1704941535163047910953561586619077778012957576840242454962072562672763776144840765558} a^{6} + \frac{12581622264335565999568045405373261261292480962259990355006411081901682757223718046}{27499057018758837273444541719662544806660606078068426692936654236657480260400657509} a^{5} - \frac{1349934614804243621221999684392341173209659823091505762108649258572253294410710929243}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{4} + \frac{412917129541394315801247667224222637725002582475703943723181056314348658398333606377}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{3} + \frac{633420144782671210505975636746414497452305133663779820999027505285057668840343667087}{3409883070326095821907123173238155556025915153680484909924145125345527552289681531116} a^{2} - \frac{78216710213574290011604170533834898464803859663498139933138293356482040657643173521}{1704941535163047910953561586619077778012957576840242454962072562672763776144840765558} a + \frac{85174144143345991261172727099495745078598994662717895033806934497675115989012259}{893107142568385495523080977799412141442094068538628839686784998780913450049680862}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{584}$, which has order $4672$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31435858697.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.365000864691088841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |