Normalized defining polynomial
\( x^{16} - 2 x^{15} + 153 x^{14} - 468 x^{13} + 30169 x^{12} - 86770 x^{11} + 3755888 x^{10} - 13294364 x^{9} + 217796337 x^{8} - 877574404 x^{7} + 6658827530 x^{6} - 23152161472 x^{5} + 126145294036 x^{4} - 313193327620 x^{3} + 1231014931084 x^{2} - 2040068815012 x + 5489864782943 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(249686282242731792647174886492450339042241=37^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $386.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{3}{10} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{10} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a - \frac{3}{10}$, $\frac{1}{7130} a^{14} + \frac{45}{1426} a^{13} + \frac{14}{713} a^{12} + \frac{776}{3565} a^{11} + \frac{801}{7130} a^{10} - \frac{661}{3565} a^{9} + \frac{317}{7130} a^{8} + \frac{2443}{7130} a^{7} + \frac{982}{3565} a^{6} + \frac{1699}{7130} a^{5} - \frac{136}{713} a^{4} - \frac{249}{1426} a^{3} + \frac{214}{3565} a^{2} - \frac{405}{1426} a - \frac{17}{230}$, $\frac{1}{586638792864545394841992441757874334100335727720841769483736885962264193102394086570} a^{15} + \frac{3017070768760972180581988124522247770187726103552145112700195892139172181636679}{117327758572909078968398488351574866820067145544168353896747377192452838620478817314} a^{14} - \frac{9020952377962587299293327779583344746267255473000084021870707615932622939815550939}{586638792864545394841992441757874334100335727720841769483736885962264193102394086570} a^{13} + \frac{4544794416644682372289872200603918601162103053986637691471763547246812168633964801}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a^{12} - \frac{12646911695668867131979791558843289178610419942454401286799295961815566578006765569}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a^{11} + \frac{20325981327941947170365848344812534387719258591749411531694360170184882141773849782}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a^{10} - \frac{6011338785700600259038797197532449644101176024048574664591194083025176345672549326}{58663879286454539484199244175787433410033572772084176948373688596226419310239408657} a^{9} + \frac{17144666105939034636591851656752708751062917519235337458817888513838760839412131515}{117327758572909078968398488351574866820067145544168353896747377192452838620478817314} a^{8} - \frac{5136835571293978888368136716200025578511646665463529858188714850710088712173042291}{58663879286454539484199244175787433410033572772084176948373688596226419310239408657} a^{7} - \frac{5711367873408539233873240023365716328634943312487048428779368920921872416627147939}{117327758572909078968398488351574866820067145544168353896747377192452838620478817314} a^{6} + \frac{51423958295739553308120479902711948870817653177456659466142874602608829788071418681}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a^{5} + \frac{19026638499607156265801394797796176236805282740178700572667220723002969475791551116}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a^{4} - \frac{157202306687762616142214726658697787137997163540589761946101944541260745159642801913}{586638792864545394841992441757874334100335727720841769483736885962264193102394086570} a^{3} - \frac{29734878323383724563528973408779458531836757692689783659567657748782103461133993127}{586638792864545394841992441757874334100335727720841769483736885962264193102394086570} a^{2} + \frac{4082211697473763328132913703181823049966264250511097453530694605425645547795806956}{293319396432272697420996220878937167050167863860420884741868442981132096551197043285} a + \frac{1359147452922190994109870418316175904238997857844624076609765363043451759688382026}{9461916013944280561967620028352811840327995608400673701350594934875228921006356235}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{584}$, which has order $4672$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36382443651.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.365000864691088841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |