Normalized defining polynomial
\( x^{16} - 8 x^{15} + 108 x^{14} - 616 x^{13} + 4916 x^{12} - 21852 x^{11} + 129218 x^{10} - 459508 x^{9} + 2174117 x^{8} - 6156340 x^{7} + 24095662 x^{6} - 52453964 x^{5} + 172046412 x^{4} - 263040692 x^{3} + 722028526 x^{2} - 598345980 x + 1353436561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24967943722642702336000000000000=2^{32}\cdot 5^{12}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1880=2^{3}\cdot 5\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1880}(1409,·)$, $\chi_{1880}(1221,·)$, $\chi_{1880}(1,·)$, $\chi_{1880}(847,·)$, $\chi_{1880}(469,·)$, $\chi_{1880}(281,·)$, $\chi_{1880}(283,·)$, $\chi_{1880}(1503,·)$, $\chi_{1880}(187,·)$, $\chi_{1880}(1127,·)$, $\chi_{1880}(1129,·)$, $\chi_{1880}(1223,·)$, $\chi_{1880}(941,·)$, $\chi_{1880}(563,·)$, $\chi_{1880}(1787,·)$, $\chi_{1880}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{8} + \frac{3}{10} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{7475447125321027810} a^{14} - \frac{7}{7475447125321027810} a^{13} + \frac{155477706952695696}{3737723562660513905} a^{12} - \frac{1865732483432348261}{7475447125321027810} a^{11} - \frac{797943506175114214}{3737723562660513905} a^{10} - \frac{541041056037964818}{3737723562660513905} a^{9} + \frac{1738758570284046999}{7475447125321027810} a^{8} + \frac{288148489905328533}{1495089425064205562} a^{7} + \frac{1020700861348891308}{3737723562660513905} a^{6} - \frac{584424497328246662}{3737723562660513905} a^{5} - \frac{2649681852022029071}{7475447125321027810} a^{4} + \frac{2076854972413412081}{7475447125321027810} a^{3} + \frac{2253312550217917507}{7475447125321027810} a^{2} + \frac{2237930338152349371}{7475447125321027810} a + \frac{47599514623538149}{7475447125321027810}$, $\frac{1}{66605523719133452289458050} a^{15} + \frac{890989}{13321104743826690457891610} a^{14} + \frac{1701385912613541180165393}{66605523719133452289458050} a^{13} + \frac{158555862224179057456154}{33302761859566726144729025} a^{12} - \frac{222786508692352593812621}{6660552371913345228945805} a^{11} + \frac{2240887432433560781643119}{33302761859566726144729025} a^{10} - \frac{13471755251659958416472603}{66605523719133452289458050} a^{9} + \frac{197861602324955780381269}{33302761859566726144729025} a^{8} - \frac{341093854026046492048452}{33302761859566726144729025} a^{7} - \frac{15684556751456368667540886}{33302761859566726144729025} a^{6} - \frac{3193739362837945959451929}{66605523719133452289458050} a^{5} - \frac{598109368196890056698888}{33302761859566726144729025} a^{4} + \frac{1242073280050507018548649}{66605523719133452289458050} a^{3} - \frac{163901488433771180191839}{701110775990878445152190} a^{2} + \frac{353550908140077053455458}{33302761859566726144729025} a - \frac{5159042765634899440018226}{33302761859566726144729025}$
Class group and class number
$C_{10}\times C_{17680}$, which has order $176800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |