Normalized defining polynomial
\( x^{16} + 14 x^{14} + 77 x^{12} + 1092 x^{10} + 10940 x^{8} + 54498 x^{6} + 232562 x^{4} + 476656 x^{2} + 923521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(247905780760576000000000000=2^{40}\cdot 5^{12}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{155} a^{8} - \frac{58}{155} a^{6} - \frac{56}{155} a^{4} - \frac{22}{155} a^{2} + \frac{1}{5}$, $\frac{1}{155} a^{9} - \frac{58}{155} a^{7} - \frac{56}{155} a^{5} - \frac{22}{155} a^{3} + \frac{1}{5} a$, $\frac{1}{155} a^{10} - \frac{2}{31} a^{6} - \frac{3}{31} a^{4} - \frac{1}{31} a^{2} - \frac{2}{5}$, $\frac{1}{155} a^{11} - \frac{2}{31} a^{7} - \frac{3}{31} a^{5} - \frac{1}{31} a^{3} - \frac{2}{5} a$, $\frac{1}{33635} a^{12} + \frac{76}{33635} a^{10} - \frac{16}{33635} a^{8} - \frac{1822}{33635} a^{6} + \frac{1213}{4805} a^{4} - \frac{96}{217} a^{2} + \frac{17}{35}$, $\frac{1}{33635} a^{13} + \frac{76}{33635} a^{11} - \frac{16}{33635} a^{9} - \frac{1822}{33635} a^{7} + \frac{1213}{4805} a^{5} - \frac{96}{217} a^{3} + \frac{17}{35} a$, $\frac{1}{98795446435} a^{14} - \frac{1056869}{98795446435} a^{12} + \frac{188583989}{98795446435} a^{10} + \frac{12489777}{14113635205} a^{8} + \frac{9899652093}{98795446435} a^{6} - \frac{1505429811}{3186949885} a^{4} - \frac{2434475}{20560967} a^{2} - \frac{1438949}{3316285}$, $\frac{1}{98795446435} a^{15} - \frac{1056869}{98795446435} a^{13} + \frac{188583989}{98795446435} a^{11} + \frac{12489777}{14113635205} a^{9} + \frac{9899652093}{98795446435} a^{7} - \frac{1505429811}{3186949885} a^{5} - \frac{2434475}{20560967} a^{3} - \frac{1438949}{3316285} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1081204}{98795446435} a^{14} + \frac{8248997}{98795446435} a^{12} + \frac{16978862}{98795446435} a^{10} + \frac{167694685}{19759089287} a^{8} + \frac{1181737976}{19759089287} a^{6} + \frac{325143197}{3186949885} a^{4} + \frac{4078688}{14686405} a^{2} - \frac{491499}{3316285} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15745481.3625 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 31 | Data not computed | ||||||