Properties

Label 16.0.24787589110...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $28.98$
Ramified primes $2, 3, 5, 7$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1296, -4320, 6552, -10608, 15880, -11232, 6186, -9704, 6713, 64, -466, -608, 261, 24, -10, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 10*x^14 + 24*x^13 + 261*x^12 - 608*x^11 - 466*x^10 + 64*x^9 + 6713*x^8 - 9704*x^7 + 6186*x^6 - 11232*x^5 + 15880*x^4 - 10608*x^3 + 6552*x^2 - 4320*x + 1296)
 
gp: K = bnfinit(x^16 - 4*x^15 - 10*x^14 + 24*x^13 + 261*x^12 - 608*x^11 - 466*x^10 + 64*x^9 + 6713*x^8 - 9704*x^7 + 6186*x^6 - 11232*x^5 + 15880*x^4 - 10608*x^3 + 6552*x^2 - 4320*x + 1296, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 10 x^{14} + 24 x^{13} + 261 x^{12} - 608 x^{11} - 466 x^{10} + 64 x^{9} + 6713 x^{8} - 9704 x^{7} + 6186 x^{6} - 11232 x^{5} + 15880 x^{4} - 10608 x^{3} + 6552 x^{2} - 4320 x + 1296 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(247875891108249600000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(491,·)$, $\chi_{840}(769,·)$, $\chi_{840}(139,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(601,·)$, $\chi_{840}(281,·)$, $\chi_{840}(419,·)$, $\chi_{840}(379,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(449,·)$, $\chi_{840}(659,·)$, $\chi_{840}(41,·)$, $\chi_{840}(251,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{30} a^{11} + \frac{1}{30} a^{9} + \frac{1}{30} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{1}{3} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{13}{30} a^{2} - \frac{4}{15} a + \frac{1}{5}$, $\frac{1}{60} a^{12} - \frac{1}{30} a^{10} + \frac{1}{15} a^{9} - \frac{3}{20} a^{8} + \frac{1}{5} a^{7} - \frac{1}{15} a^{6} - \frac{1}{5} a^{5} + \frac{9}{20} a^{4} - \frac{2}{15} a^{3} - \frac{7}{30} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{180} a^{13} + \frac{1}{180} a^{12} - \frac{1}{90} a^{11} + \frac{1}{90} a^{10} - \frac{1}{36} a^{9} + \frac{11}{60} a^{8} + \frac{19}{90} a^{7} - \frac{4}{45} a^{6} - \frac{5}{12} a^{5} - \frac{41}{180} a^{4} + \frac{17}{45} a^{3} + \frac{16}{45} a^{2} + \frac{2}{5}$, $\frac{1}{39600} a^{14} + \frac{1}{1650} a^{13} - \frac{1}{3300} a^{12} + \frac{29}{4950} a^{11} + \frac{241}{7920} a^{10} + \frac{101}{9900} a^{9} + \frac{2399}{9900} a^{8} + \frac{82}{825} a^{7} + \frac{5017}{39600} a^{6} - \frac{3413}{9900} a^{5} + \frac{2099}{4950} a^{4} + \frac{2059}{4950} a^{3} - \frac{329}{4950} a^{2} - \frac{199}{825} a + \frac{127}{550}$, $\frac{1}{531821188521685537200} a^{15} - \frac{568717366245541}{132955297130421384300} a^{14} + \frac{15764129840064431}{33238824282605346075} a^{13} - \frac{34479099768519434}{11079608094201782025} a^{12} - \frac{2608547437298541}{371643038799221200} a^{11} - \frac{106547908285341401}{3910449915600628950} a^{10} + \frac{6471197025721976623}{66477648565210692150} a^{9} + \frac{1553712747171305681}{66477648565210692150} a^{8} - \frac{1811720802003287191}{531821188521685537200} a^{7} + \frac{4851783625313759819}{66477648565210692150} a^{6} + \frac{8013219057119290919}{44318432376807128100} a^{5} + \frac{730898150389285133}{7386405396134521350} a^{4} - \frac{19676007038911345951}{66477648565210692150} a^{3} - \frac{3920637006770310179}{22159216188403564050} a^{2} - \frac{123379548469361071}{1477281079226904270} a - \frac{287006496767277086}{1231067566022420225}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{24321981916923431}{9669476154939737040} a^{15} + \frac{60527686683138899}{9669476154939737040} a^{14} + \frac{86208439124073119}{2417369038734934260} a^{13} - \frac{1822932440161727}{201447419894577855} a^{12} - \frac{4628522923109141}{6757146159985840} a^{11} + \frac{282744406707628907}{568792714996455120} a^{10} + \frac{2667886003706996203}{1208684519367467130} a^{9} + \frac{1798528859339735488}{604342259683733565} a^{8} - \frac{128401126857343730143}{9669476154939737040} a^{7} + \frac{29451486416072973631}{9669476154939737040} a^{6} - \frac{4475301637703162797}{805789679578311420} a^{5} + \frac{997177238712518723}{53719311971887428} a^{4} - \frac{1081384809208451251}{120868451936746713} a^{3} + \frac{2097977440447360627}{402894839789155710} a^{2} - \frac{555136891671696971}{134298279929718570} a + \frac{64237729386469487}{44766093309906190} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 254690.329412 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-2}, \sqrt{-35})\), \(\Q(\sqrt{6}, \sqrt{-35})\), \(\Q(\sqrt{-3}, \sqrt{-35})\), \(\Q(\sqrt{6}, \sqrt{70})\), \(\Q(\sqrt{-3}, \sqrt{70})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{-15}, \sqrt{21})\), \(\Q(\sqrt{30}, \sqrt{-35})\), \(\Q(\sqrt{-10}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{-15}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-7}, \sqrt{-10})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{6}, \sqrt{-10})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{-10}, \sqrt{21})\), \(\Q(\sqrt{14}, \sqrt{-15})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(\sqrt{14}, \sqrt{30})\), \(\Q(\sqrt{-10}, \sqrt{-42})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), \(\Q(\sqrt{-3}, \sqrt{14})\), 8.0.497871360000.17, 8.0.497871360000.8, 8.0.6146560000.1, 8.0.497871360000.4, 8.0.497871360000.15, 8.0.121550625.1, 8.0.497871360000.12, 8.8.497871360000.2, 8.0.497871360000.2, 8.0.497871360000.18, 8.0.497871360000.20, 8.0.796594176.1, 8.0.207360000.2, 8.0.497871360000.13, 8.0.497871360000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$