Normalized defining polynomial
\( x^{16} - x^{15} + 369 x^{14} - 7127 x^{13} - 24628 x^{12} - 3860358 x^{11} + 3847802 x^{10} - 31586510 x^{9} + 11790894313 x^{8} + 150438196003 x^{7} + 3045583313341 x^{6} + 28963391474261 x^{5} + 215319701431098 x^{4} + 1030855819624916 x^{3} + 5228711472095080 x^{2} + 2899855979953376 x + 99902637257197312 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(247615754888863175950064888078950980890077741301809=41^{14}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1411.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3977=41\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3977}(1408,·)$, $\chi_{3977}(1,·)$, $\chi_{3977}(3976,·)$, $\chi_{3977}(2569,·)$, $\chi_{3977}(2059,·)$, $\chi_{3977}(3348,·)$, $\chi_{3977}(2133,·)$, $\chi_{3977}(1239,·)$, $\chi_{3977}(2586,·)$, $\chi_{3977}(161,·)$, $\chi_{3977}(3816,·)$, $\chi_{3977}(1391,·)$, $\chi_{3977}(2738,·)$, $\chi_{3977}(1844,·)$, $\chi_{3977}(629,·)$, $\chi_{3977}(1918,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{4} + \frac{7}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} - \frac{7}{128} a^{4} + \frac{3}{16} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} + \frac{1}{128} a^{7} + \frac{3}{128} a^{6} + \frac{1}{256} a^{5} - \frac{1}{256} a^{4} - \frac{13}{64} a^{3} - \frac{1}{64} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{3584} a^{10} - \frac{1}{896} a^{9} - \frac{3}{3584} a^{8} - \frac{5}{448} a^{7} - \frac{17}{3584} a^{6} + \frac{5}{128} a^{5} - \frac{31}{512} a^{4} + \frac{31}{224} a^{3} - \frac{37}{896} a^{2} - \frac{69}{224} a + \frac{11}{28}$, $\frac{1}{7168} a^{11} + \frac{9}{7168} a^{9} - \frac{3}{896} a^{8} + \frac{103}{7168} a^{7} + \frac{1}{56} a^{6} - \frac{43}{1024} a^{5} + \frac{41}{896} a^{4} + \frac{431}{1792} a^{3} + \frac{69}{448} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{86016} a^{12} - \frac{5}{86016} a^{11} - \frac{5}{86016} a^{10} - \frac{125}{86016} a^{9} - \frac{71}{86016} a^{8} - \frac{1171}{86016} a^{7} - \frac{757}{28672} a^{6} - \frac{677}{28672} a^{5} - \frac{25}{6144} a^{4} - \frac{3671}{21504} a^{3} - \frac{527}{10752} a^{2} - \frac{397}{2688} a + \frac{163}{336}$, $\frac{1}{688128} a^{13} + \frac{1}{344064} a^{12} + \frac{1}{21504} a^{11} + \frac{1}{21504} a^{10} + \frac{139}{344064} a^{9} + \frac{117}{57344} a^{8} - \frac{1339}{172032} a^{7} - \frac{275}{28672} a^{6} + \frac{2695}{98304} a^{5} + \frac{943}{49152} a^{4} + \frac{13619}{57344} a^{3} + \frac{5073}{28672} a^{2} - \frac{419}{21504} a - \frac{251}{2688}$, $\frac{1}{38535168} a^{14} - \frac{25}{38535168} a^{13} - \frac{83}{19267584} a^{12} - \frac{103}{2408448} a^{11} + \frac{1315}{19267584} a^{10} + \frac{11455}{6422528} a^{9} - \frac{7957}{2408448} a^{8} - \frac{48815}{3211264} a^{7} + \frac{338809}{38535168} a^{6} + \frac{1032791}{38535168} a^{5} + \frac{304645}{6422528} a^{4} - \frac{51567}{3211264} a^{3} + \frac{69091}{4816896} a^{2} + \frac{401609}{1204224} a + \frac{24483}{50176}$, $\frac{1}{88700100850430410663128215888579155457310709133324659755267612076025083035099391328256} a^{15} + \frac{277923726492599080060134803102825483739026346016704579620574282207679746990485}{44350050425215205331564107944289577728655354566662329877633806038012541517549695664128} a^{14} - \frac{35190362869029431045216127019213975049251161074107153793836629039118156344621}{60711910233011916949437519430923446582690423773665064856446004158812514055509508096} a^{13} - \frac{8005764075197170288072635439110922910307532790417332774836552636502738927886477}{2111907163105485968169719425918551320412159741269634756077800287524406738930937888768} a^{12} + \frac{431462540967253196542977525201233362417922377623451381724953083030133642073636137}{14783350141738401777188035981429859242885118188887443292544602012670847172516565221376} a^{11} - \frac{867521626318406678194199456263810250436820832719650015355513546630864277135270093}{22175025212607602665782053972144788864327677283331164938816903019006270758774847832064} a^{10} - \frac{61314871964830585021665414074762502875736851246302174723316342779855550853430876049}{44350050425215205331564107944289577728655354566662329877633806038012541517549695664128} a^{9} - \frac{5399130281332892492224814830157331117546335299253759320351272914559851456070285455}{3167860744658228952254579138877826980618239611904452134116700431286610108396406833152} a^{8} + \frac{132655978450849001859240004386549698825370612281100947839734600431875839371029803643}{12671442978632915809018316555511307922472958447617808536466801725146440433585627332608} a^{7} - \frac{162648129317294762332826373845462670150822239384010966523879177213497511064508671689}{6335721489316457904509158277755653961236479223808904268233400862573220216792813666304} a^{6} - \frac{2227382627273086631225197512683447766804266946970742096458204272956987592056758788029}{88700100850430410663128215888579155457310709133324659755267612076025083035099391328256} a^{5} - \frac{471247876571425495172737521009634671303436059517350041621253515044657258401684700271}{14783350141738401777188035981429859242885118188887443292544602012670847172516565221376} a^{4} - \frac{5434985113931063037925087829134021299806101761579852678257540819350632619788976366081}{22175025212607602665782053972144788864327677283331164938816903019006270758774847832064} a^{3} + \frac{2726574965466785428907245537420670566127967206662677138279107353520480727347299925677}{11087512606303801332891026986072394432163838641665582469408451509503135379387423916032} a^{2} + \frac{292909479684890666409015054996702987467376419704952384848522546060816615796427269827}{2771878151575950333222756746518098608040959660416395617352112877375783844846855979008} a - \frac{37017212179660842120464181927854456269318833527721289364819277754501604947484284855}{115494922982331263884281531104920775335039985850683150723004703223990993535285665792}$
Class group and class number
$C_{21}\times C_{4338913908}$, which has order $91117192068$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1085553540910 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 97 | Data not computed | ||||||