Normalized defining polynomial
\( x^{16} - 4 x^{15} - 14 x^{14} + 84 x^{13} + 135 x^{12} - 1140 x^{11} - 100 x^{10} + 7832 x^{9} - 3713 x^{8} - 26568 x^{7} - 772 x^{6} + 29700 x^{5} + 347147 x^{4} - 604188 x^{3} - 261314 x^{2} + 228044 x + 1113751 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24759631762948096000000000000=2^{44}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(560=2^{4}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(491,·)$, $\chi_{560}(449,·)$, $\chi_{560}(307,·)$, $\chi_{560}(83,·)$, $\chi_{560}(281,·)$, $\chi_{560}(153,·)$, $\chi_{560}(27,·)$, $\chi_{560}(97,·)$, $\chi_{560}(99,·)$, $\chi_{560}(169,·)$, $\chi_{560}(363,·)$, $\chi_{560}(433,·)$, $\chi_{560}(211,·)$, $\chi_{560}(377,·)$, $\chi_{560}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{33537747966747} a^{14} - \frac{1704166806971}{33537747966747} a^{13} + \frac{5355810705352}{33537747966747} a^{12} + \frac{2362197408109}{11179249322249} a^{11} + \frac{7131673588819}{33537747966747} a^{10} + \frac{10704374354978}{33537747966747} a^{9} - \frac{8481010775291}{33537747966747} a^{8} + \frac{664900662464}{11179249322249} a^{7} + \frac{13460651601848}{33537747966747} a^{6} - \frac{5815603886471}{33537747966747} a^{5} + \frac{38127753047}{360620945879} a^{4} + \frac{3047903221789}{33537747966747} a^{3} - \frac{6988572118226}{33537747966747} a^{2} - \frac{5190680785693}{11179249322249} a - \frac{2926139522542}{33537747966747}$, $\frac{1}{1287309409955507421083882427} a^{15} + \frac{15394097610476}{1287309409955507421083882427} a^{14} + \frac{3947340858806193563966819}{41526109998564755518834917} a^{13} - \frac{477652654218632124462850139}{1287309409955507421083882427} a^{12} - \frac{463815389081976344970405650}{1287309409955507421083882427} a^{11} - \frac{133298068046515760884639415}{429103136651835807027960809} a^{10} + \frac{27807807563564108419531685}{429103136651835807027960809} a^{9} + \frac{20356729992784879809882040}{1287309409955507421083882427} a^{8} + \frac{218214343232252800948750508}{1287309409955507421083882427} a^{7} + \frac{43098938392034786849279362}{429103136651835807027960809} a^{6} + \frac{70318509760388264399924965}{1287309409955507421083882427} a^{5} - \frac{417756621293096209641628100}{1287309409955507421083882427} a^{4} + \frac{353628125814650015395201667}{1287309409955507421083882427} a^{3} - \frac{548744172686627644070105543}{1287309409955507421083882427} a^{2} + \frac{230165561304285222412248047}{1287309409955507421083882427} a - \frac{144739326822610086719390758}{1287309409955507421083882427}$
Class group and class number
$C_{2}\times C_{170}$, which has order $340$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69472.20870795674 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |