Normalized defining polynomial
\( x^{16} - 6 x^{15} + 120 x^{14} - 572 x^{13} + 6445 x^{12} - 24922 x^{11} + 203540 x^{10} - 637603 x^{9} + 4145112 x^{8} - 10300950 x^{7} + 55839765 x^{6} - 104874598 x^{5} + 486803774 x^{4} - 622686499 x^{3} + 2517198244 x^{2} - 1664461289 x + 5933446319 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24722989956581301387479701814209=17^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1003=17\cdot 59\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1003}(1,·)$, $\chi_{1003}(648,·)$, $\chi_{1003}(650,·)$, $\chi_{1003}(591,·)$, $\chi_{1003}(412,·)$, $\chi_{1003}(353,·)$, $\chi_{1003}(355,·)$, $\chi_{1003}(1002,·)$, $\chi_{1003}(237,·)$, $\chi_{1003}(943,·)$, $\chi_{1003}(178,·)$, $\chi_{1003}(117,·)$, $\chi_{1003}(886,·)$, $\chi_{1003}(825,·)$, $\chi_{1003}(60,·)$, $\chi_{1003}(766,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{31668328779672326831155258657576320261155382047746} a^{15} - \frac{2194721697154506650484092819917534399779706269764}{15834164389836163415577629328788160130577691023873} a^{14} - \frac{1060455543552955148667535473546727325981693974254}{15834164389836163415577629328788160130577691023873} a^{13} - \frac{1053120036848987616542650363544919987580716171857}{15834164389836163415577629328788160130577691023873} a^{12} - \frac{3249841053066214365511883117661532576384125927848}{15834164389836163415577629328788160130577691023873} a^{11} - \frac{7893079354275629697038504331968227728617214155713}{15834164389836163415577629328788160130577691023873} a^{10} + \frac{5646125056942933913557452272897981499097113092301}{15834164389836163415577629328788160130577691023873} a^{9} + \frac{360943249823633799999379801192119770867906958137}{15834164389836163415577629328788160130577691023873} a^{8} - \frac{5729304487124826912806735536645024540626191947889}{15834164389836163415577629328788160130577691023873} a^{7} - \frac{6762820963646789922211054476432687742539603790527}{15834164389836163415577629328788160130577691023873} a^{6} - \frac{4402372083811010020624631847014958292046157384271}{15834164389836163415577629328788160130577691023873} a^{5} - \frac{221430102703928011530055519043248982579086773306}{15834164389836163415577629328788160130577691023873} a^{4} - \frac{7366229829725078977788389388575172737589062506286}{15834164389836163415577629328788160130577691023873} a^{3} - \frac{5655779634340098624409147946523674438840410956768}{15834164389836163415577629328788160130577691023873} a^{2} + \frac{3374483266213481257863744209320779910659623459185}{15834164389836163415577629328788160130577691023873} a + \frac{7025930302678194030462246300332023905694546090417}{31668328779672326831155258657576320261155382047746}$
Class group and class number
$C_{217848}$, which has order $217848$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1003}) \), \(\Q(\sqrt{17}, \sqrt{-59})\), 4.4.4913.1, 4.0.17102153.2, 8.0.292483637235409.3, 8.0.4972221833001953.2, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |