Normalized defining polynomial
\( x^{16} - 4 x^{15} + 50 x^{14} - 64 x^{13} + 1174 x^{12} - 786 x^{11} + 21844 x^{10} + 1738 x^{9} + 275707 x^{8} - 254052 x^{7} + 5039632 x^{6} - 12048508 x^{5} + 51842283 x^{4} - 82314412 x^{3} + 199952265 x^{2} - 187885492 x + 289734503 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24722989956581301387479701814209=17^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{34} a^{8} - \frac{1}{17} a^{7} + \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{15}{34} a^{4} - \frac{7}{17} a^{3} - \frac{11}{34} a^{2} - \frac{15}{34} a + \frac{1}{34}$, $\frac{1}{34} a^{9} + \frac{1}{17} a^{7} - \frac{4}{17} a^{6} + \frac{13}{34} a^{5} - \frac{5}{17} a^{4} - \frac{5}{34} a^{3} - \frac{3}{34} a^{2} + \frac{5}{34} a + \frac{1}{17}$, $\frac{1}{34} a^{10} - \frac{2}{17} a^{7} + \frac{1}{34} a^{6} - \frac{2}{17} a^{5} - \frac{9}{34} a^{4} - \frac{9}{34} a^{3} - \frac{7}{34} a^{2} - \frac{1}{17} a - \frac{1}{17}$, $\frac{1}{34} a^{11} - \frac{7}{34} a^{7} - \frac{7}{17} a^{6} + \frac{13}{34} a^{5} - \frac{1}{34} a^{4} + \frac{5}{34} a^{3} - \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{2}{17}$, $\frac{1}{442} a^{12} - \frac{1}{442} a^{10} - \frac{3}{221} a^{9} + \frac{1}{221} a^{8} - \frac{20}{221} a^{7} + \frac{57}{221} a^{6} - \frac{11}{26} a^{5} + \frac{211}{442} a^{4} - \frac{5}{34} a^{3} + \frac{5}{13} a^{2} + \frac{45}{442} a + \frac{67}{442}$, $\frac{1}{442} a^{13} - \frac{1}{442} a^{11} - \frac{3}{221} a^{10} + \frac{1}{221} a^{9} - \frac{1}{442} a^{8} + \frac{18}{221} a^{7} + \frac{47}{442} a^{6} - \frac{127}{442} a^{5} - \frac{8}{17} a^{4} + \frac{33}{221} a^{3} + \frac{29}{221} a^{2} - \frac{38}{221} a + \frac{3}{34}$, $\frac{1}{442} a^{14} - \frac{3}{221} a^{11} + \frac{1}{442} a^{10} + \frac{3}{221} a^{9} - \frac{1}{442} a^{8} + \frac{111}{442} a^{7} + \frac{7}{34} a^{6} + \frac{56}{221} a^{5} - \frac{76}{221} a^{4} + \frac{16}{221} a^{3} + \frac{21}{221} a^{2} - \frac{75}{221} a + \frac{27}{221}$, $\frac{1}{195007616590074081849026211187987897762346} a^{15} - \frac{24235056228197692021341321853020663164}{97503808295037040924513105593993948881173} a^{14} + \frac{211488150713218426677734338029925099119}{195007616590074081849026211187987897762346} a^{13} + \frac{187274274512264112889358198909729995519}{195007616590074081849026211187987897762346} a^{12} - \frac{16212687738261973304077028621082785549}{97503808295037040924513105593993948881173} a^{11} - \frac{774531989266296871874206774949817822767}{97503808295037040924513105593993948881173} a^{10} + \frac{207573051253434592044157163282163859189}{195007616590074081849026211187987897762346} a^{9} + \frac{863089690808770238491901144552135964269}{97503808295037040924513105593993948881173} a^{8} + \frac{88826896640411552356750672062060817299211}{195007616590074081849026211187987897762346} a^{7} + \frac{3148680476346094604789600056099446850863}{7500292945772080071116392737999534529321} a^{6} - \frac{10209186866477901384875771753219048929490}{97503808295037040924513105593993948881173} a^{5} + \frac{44471990545029361661303330954943384326306}{97503808295037040924513105593993948881173} a^{4} - \frac{8599449903791874663738167189897933444166}{97503808295037040924513105593993948881173} a^{3} - \frac{78836502315548426245428373976354569320111}{195007616590074081849026211187987897762346} a^{2} + \frac{34951640994359175595853003229567418830393}{195007616590074081849026211187987897762346} a + \frac{41334875315187904250064305144137378915111}{97503808295037040924513105593993948881173}$
Class group and class number
$C_{696}$, which has order $696$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 964643.943008 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1003}) \), \(\Q(\sqrt{17}, \sqrt{-59})\), 4.4.4913.1, 4.0.17102153.2, 8.0.292483637235409.3, 8.4.1428388920713.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |