Normalized defining polynomial
\( x^{16} - 8 x^{15} - 4 x^{14} + 168 x^{13} - 18 x^{12} - 2440 x^{11} + 1466 x^{10} + 19994 x^{9} + 2364 x^{8} - 164840 x^{7} + 31514 x^{6} + 602240 x^{5} - 47635 x^{4} - 1158746 x^{3} - 748608 x^{2} + 1464552 x + 8353648 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24722989956581301387479701814209=17^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{68} a^{8} - \frac{1}{17} a^{7} - \frac{5}{34} a^{6} + \frac{5}{34} a^{5} - \frac{1}{34} a^{4} - \frac{3}{34} a^{3} - \frac{7}{68} a^{2} + \frac{9}{34} a - \frac{4}{17}$, $\frac{1}{68} a^{9} + \frac{2}{17} a^{7} + \frac{1}{17} a^{6} + \frac{1}{17} a^{5} - \frac{7}{34} a^{4} + \frac{3}{68} a^{3} + \frac{6}{17} a^{2} + \frac{11}{34} a + \frac{1}{17}$, $\frac{1}{68} a^{10} + \frac{1}{34} a^{7} + \frac{4}{17} a^{6} + \frac{2}{17} a^{5} - \frac{15}{68} a^{4} + \frac{1}{17} a^{3} - \frac{6}{17} a^{2} - \frac{1}{17} a - \frac{2}{17}$, $\frac{1}{68} a^{11} - \frac{5}{34} a^{7} - \frac{3}{34} a^{6} - \frac{1}{68} a^{5} + \frac{2}{17} a^{4} + \frac{11}{34} a^{3} - \frac{6}{17} a^{2} - \frac{5}{34} a + \frac{8}{17}$, $\frac{1}{1361528368} a^{12} - \frac{3}{680764184} a^{11} + \frac{55940}{85095523} a^{10} - \frac{4475145}{1361528368} a^{9} + \frac{1507}{85095523} a^{8} + \frac{6688589}{340382092} a^{7} - \frac{321564861}{1361528368} a^{6} + \frac{85747305}{680764184} a^{5} - \frac{1605901}{340382092} a^{4} - \frac{5892075}{1361528368} a^{3} - \frac{60216441}{340382092} a^{2} + \frac{47506667}{170191046} a - \frac{569927}{170191046}$, $\frac{1}{1361528368} a^{13} + \frac{223751}{340382092} a^{11} + \frac{895095}{1361528368} a^{10} - \frac{3402141}{680764184} a^{9} + \frac{859569}{170191046} a^{8} + \frac{79230987}{1361528368} a^{7} - \frac{29012881}{340382092} a^{6} + \frac{27705627}{170191046} a^{5} - \frac{284703411}{1361528368} a^{4} - \frac{48007965}{680764184} a^{3} + \frac{59079923}{340382092} a^{2} - \frac{45900779}{170191046} a + \frac{23318314}{85095523}$, $\frac{1}{1361528368} a^{14} + \frac{6265119}{1361528368} a^{11} + \frac{4028921}{680764184} a^{10} + \frac{217223}{85095523} a^{9} + \frac{3033763}{1361528368} a^{8} - \frac{23047757}{340382092} a^{7} + \frac{17422291}{340382092} a^{6} - \frac{310066099}{1361528368} a^{5} - \frac{69216363}{680764184} a^{4} + \frac{101894075}{340382092} a^{3} - \frac{77175285}{170191046} a^{2} + \frac{9221190}{85095523} a + \frac{42223637}{85095523}$, $\frac{1}{60714634514224} a^{15} + \frac{22289}{60714634514224} a^{14} - \frac{2789}{15178658628556} a^{13} - \frac{2705}{30357317257112} a^{12} - \frac{366452701497}{60714634514224} a^{11} + \frac{107507912861}{30357317257112} a^{10} + \frac{8711369307}{7589329314278} a^{9} + \frac{22998320637}{3195507079696} a^{8} + \frac{576615903997}{3794664657139} a^{7} - \frac{1790296669629}{30357317257112} a^{6} - \frac{12532958676611}{60714634514224} a^{5} + \frac{2814364035929}{30357317257112} a^{4} + \frac{10257132477203}{60714634514224} a^{3} - \frac{6611517114389}{15178658628556} a^{2} + \frac{99639391544}{223215568067} a - \frac{3653440803737}{7589329314278}$
Class group and class number
$C_{24}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 335717402.221 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-1003}) \), \(\Q(\sqrt{17}, \sqrt{-59})\), 4.2.289867.1 x2, 4.0.17102153.1 x2, 8.0.292483637235409.1, 8.2.84274946322067.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.2 | $x^{8} - 153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |