Normalized defining polynomial
\( x^{16} - 6 x^{15} + 30 x^{14} - 108 x^{13} + 411 x^{12} - 1060 x^{11} + 796 x^{10} + 5577 x^{9} + 18564 x^{8} - 64314 x^{7} - 50075 x^{6} - 50668 x^{5} + 836728 x^{4} + 2574663 x^{3} + 5459082 x^{2} + 3924023 x + 4936153 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24722989956581301387479701814209=17^{14}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} - \frac{2}{13} a^{13} - \frac{1}{13} a^{12} - \frac{3}{26} a^{11} - \frac{1}{13} a^{10} - \frac{2}{13} a^{9} - \frac{9}{26} a^{8} + \frac{4}{13} a^{6} - \frac{1}{2} a^{5} + \frac{2}{13} a^{4} - \frac{6}{13} a^{3} - \frac{7}{26} a^{2} - \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{134883544356867694290703551727695838910793158546} a^{15} + \frac{238803146175798762839794773638983165176985659}{134883544356867694290703551727695838910793158546} a^{14} - \frac{9255426350370241252799964715206762991424950808}{67441772178433847145351775863847919455396579273} a^{13} - \frac{13055652136887722676938572015695483921844699612}{67441772178433847145351775863847919455396579273} a^{12} + \frac{4464950813577111334712607009396008733865233785}{10375657258220591868515657825207372223907166042} a^{11} + \frac{28634797134644514397771821024861247971737665800}{67441772178433847145351775863847919455396579273} a^{10} - \frac{7218539245007196031248958801983764199529908060}{67441772178433847145351775863847919455396579273} a^{9} + \frac{24967212508780205429148078589353666749110763201}{134883544356867694290703551727695838910793158546} a^{8} + \frac{7857267902556709424000192677391463152407043023}{67441772178433847145351775863847919455396579273} a^{7} + \frac{4809494180723679491760526750457681908621087334}{67441772178433847145351775863847919455396579273} a^{6} + \frac{54515836300095634062955917835937448529366485243}{134883544356867694290703551727695838910793158546} a^{5} + \frac{32241027960306865841487351875236805345562285940}{67441772178433847145351775863847919455396579273} a^{4} - \frac{373589619973311972691344147333407213447229538}{757772721105998282532042425436493477026927857} a^{3} - \frac{66280565334047400869222837663875638662183826847}{134883544356867694290703551727695838910793158546} a^{2} - \frac{27930261890873025704981211784291676824662809007}{67441772178433847145351775863847919455396579273} a + \frac{34032761470618324229001202252329197699445032763}{134883544356867694290703551727695838910793158546}$
Class group and class number
$C_{2}\times C_{626}$, which has order $1252$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1288346.89197 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 4.2.289867.1, 4.2.17051.1, 8.4.1428388920713.1, 8.0.4972221833001953.2, 8.4.84022877689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $59$ | 59.4.2.2 | $x^{4} - 59 x^{2} + 6962$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 59.4.2.2 | $x^{4} - 59 x^{2} + 6962$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 59.8.4.1 | $x^{8} + 97468 x^{4} - 205379 x^{2} + 2375002756$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |