Normalized defining polynomial
\( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3510 x^{12} - 14872 x^{11} + 77596 x^{10} - 262712 x^{9} + 1104105 x^{8} - 2984864 x^{7} + 10419088 x^{6} - 21769840 x^{5} + 63853488 x^{4} - 94452624 x^{3} + 232760200 x^{2} - 188732656 x + 387186238 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24681786277054131674683564621824=2^{62}\cdot 3^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1248=2^{5}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1248}(1,·)$, $\chi_{1248}(389,·)$, $\chi_{1248}(781,·)$, $\chi_{1248}(77,·)$, $\chi_{1248}(1169,·)$, $\chi_{1248}(469,·)$, $\chi_{1248}(857,·)$, $\chi_{1248}(157,·)$, $\chi_{1248}(1093,·)$, $\chi_{1248}(545,·)$, $\chi_{1248}(937,·)$, $\chi_{1248}(625,·)$, $\chi_{1248}(1013,·)$, $\chi_{1248}(233,·)$, $\chi_{1248}(313,·)$, $\chi_{1248}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{17} a^{12} - \frac{6}{17} a^{11} + \frac{5}{17} a^{10} - \frac{4}{17} a^{9} + \frac{4}{17} a^{8} - \frac{7}{17} a^{7} - \frac{6}{17} a^{6} + \frac{5}{17} a^{5} - \frac{7}{17} a^{4} - \frac{2}{17} a^{3} + \frac{8}{17} a^{2} - \frac{8}{17} a - \frac{5}{17}$, $\frac{1}{17} a^{13} + \frac{3}{17} a^{11} - \frac{8}{17} a^{10} - \frac{3}{17} a^{9} + \frac{3}{17} a^{7} + \frac{3}{17} a^{6} + \frac{6}{17} a^{5} + \frac{7}{17} a^{4} - \frac{4}{17} a^{3} + \frac{6}{17} a^{2} - \frac{2}{17} a + \frac{4}{17}$, $\frac{1}{2237572821431101393} a^{14} - \frac{7}{2237572821431101393} a^{13} + \frac{38164717908479502}{2237572821431101393} a^{12} - \frac{228988307450876921}{2237572821431101393} a^{11} + \frac{297261205961115221}{2237572821431101393} a^{10} + \frac{612753455160795504}{2237572821431101393} a^{9} - \frac{442475825484439393}{2237572821431101393} a^{8} + \frac{49656831875541489}{2237572821431101393} a^{7} - \frac{742974079506376565}{2237572821431101393} a^{6} + \frac{434840756296417252}{2237572821431101393} a^{5} + \frac{910624353189522987}{2237572821431101393} a^{4} - \frac{29285134595538478}{131621930672417729} a^{3} + \frac{287946957518331502}{2237572821431101393} a^{2} - \frac{718962777344356446}{2237572821431101393} a - \frac{237859525581739614}{2237572821431101393}$, $\frac{1}{10603448124935667609872081} a^{15} + \frac{2369401}{10603448124935667609872081} a^{14} + \frac{103476856535660520648389}{10603448124935667609872081} a^{13} - \frac{270305639147702655264638}{10603448124935667609872081} a^{12} + \frac{1892646986526967639158815}{10603448124935667609872081} a^{11} + \frac{1882173203512614871894625}{10603448124935667609872081} a^{10} - \frac{4552431857392919101721576}{10603448124935667609872081} a^{9} + \frac{2764635026363880875506079}{10603448124935667609872081} a^{8} + \frac{3583331087844845325869672}{10603448124935667609872081} a^{7} - \frac{1157601436451245465393824}{10603448124935667609872081} a^{6} + \frac{3187347991530546185779684}{10603448124935667609872081} a^{5} + \frac{3229148600922464767759415}{10603448124935667609872081} a^{4} + \frac{5217969199335626649295253}{10603448124935667609872081} a^{3} - \frac{4757472539818891925664840}{10603448124935667609872081} a^{2} + \frac{100087788792506231828146}{623732242643274565286593} a - \frac{3233397870476920710136230}{10603448124935667609872081}$
Class group and class number
$C_{3}\times C_{43104}$, which has order $129312$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{2}, \sqrt{-39})\), \(\Q(\zeta_{16})^+\), 4.0.3115008.1, 8.0.9703274840064.5, 8.0.4968076718112768.8, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||