Normalized defining polynomial
\( x^{16} - 3 x^{15} - 4 x^{14} + 10 x^{13} + 47 x^{12} - 109 x^{11} + 67 x^{10} - 338 x^{9} + 1024 x^{8} - 914 x^{7} + 327 x^{6} - 1110 x^{5} + 1585 x^{4} - 88 x^{3} - 484 x^{2} - 407 x + 407 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2462288405368583548933=11^{10}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} + \frac{1}{37} a^{11} + \frac{8}{37} a^{10} - \frac{11}{37} a^{9} + \frac{7}{37} a^{8} + \frac{10}{37} a^{7} - \frac{9}{37} a^{6} + \frac{8}{37} a^{5} + \frac{11}{37} a^{4} + \frac{12}{37} a^{3} + \frac{3}{37} a^{2}$, $\frac{1}{407} a^{13} - \frac{5}{407} a^{12} + \frac{2}{407} a^{11} + \frac{89}{407} a^{10} + \frac{184}{407} a^{9} - \frac{69}{407} a^{8} + \frac{5}{407} a^{7} + \frac{25}{407} a^{6} - \frac{4}{11} a^{5} - \frac{128}{407} a^{4} - \frac{13}{37} a^{3} - \frac{5}{37} a^{2}$, $\frac{1}{2849} a^{14} - \frac{1}{2849} a^{13} + \frac{4}{2849} a^{12} + \frac{526}{2849} a^{11} - \frac{912}{2849} a^{10} - \frac{796}{2849} a^{9} - \frac{117}{2849} a^{8} + \frac{1079}{2849} a^{7} + \frac{1382}{2849} a^{6} + \frac{677}{2849} a^{5} + \frac{808}{2849} a^{4} + \frac{41}{259} a^{3} - \frac{125}{259} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{94095304765} a^{15} + \frac{3211849}{18819060953} a^{14} - \frac{1095254}{8554118615} a^{13} + \frac{755976663}{94095304765} a^{12} - \frac{34692455849}{94095304765} a^{11} + \frac{14322325404}{94095304765} a^{10} - \frac{28330369471}{94095304765} a^{9} + \frac{4966786469}{94095304765} a^{8} + \frac{2041284801}{94095304765} a^{7} + \frac{932870249}{8554118615} a^{6} + \frac{12493847649}{94095304765} a^{5} + \frac{119995487}{94095304765} a^{4} - \frac{2988415464}{8554118615} a^{3} + \frac{527680994}{1710823723} a^{2} + \frac{35054903}{231192395} a - \frac{7079096}{33027485}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17049.9697335 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.4477.1, 8.0.741610573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |