Normalized defining polynomial
\( x^{16} - 3 x^{15} - 4 x^{14} + 8 x^{13} - 187 x^{12} + 294 x^{11} + 1123 x^{10} - 730 x^{9} + 6731 x^{8} + 292 x^{7} - 18088 x^{6} - 15999 x^{5} + 349884 x^{4} + 341793 x^{3} + 1018387 x^{2} - 768343 x + 2375353 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24451371959186803441564976617=19^{12}\cdot 73^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{3}{16} a^{11} + \frac{1}{8} a^{10} + \frac{3}{16} a^{9} + \frac{1}{16} a^{8} + \frac{5}{16} a^{7} + \frac{1}{16} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{5}{16} a - \frac{1}{16}$, $\frac{1}{6157596473570583034392441113910910912406575648} a^{15} + \frac{5156757860569192487873785413691168327295853}{192424889799080719824763784809715966012705489} a^{14} + \frac{58925063356134197641061649858002303946316603}{769699559196322879299055139238863864050821956} a^{13} - \frac{76303343788497793975469703778128841454509717}{1539399118392645758598110278477727728101643912} a^{12} - \frac{448705934858752038153047717076365300589079803}{6157596473570583034392441113910910912406575648} a^{11} + \frac{1294505383561370610166368516673625345832939729}{6157596473570583034392441113910910912406575648} a^{10} - \frac{540369116397293362141145868192640418656853833}{3078798236785291517196220556955455456203287824} a^{9} + \frac{458787933182452271200875811479042667207039917}{1539399118392645758598110278477727728101643912} a^{8} - \frac{964255940655289830289579488394604082320562301}{6157596473570583034392441113910910912406575648} a^{7} + \frac{2665860775068320354997749797530125402521704873}{6157596473570583034392441113910910912406575648} a^{6} - \frac{452433141058416662019848842298647795724885645}{6157596473570583034392441113910910912406575648} a^{5} - \frac{17078398066971769350605012067389601602785301}{3078798236785291517196220556955455456203287824} a^{4} + \frac{177792202298648628083754693781157887536655279}{3078798236785291517196220556955455456203287824} a^{3} - \frac{1453461535998523387094731649125546780742283789}{6157596473570583034392441113910910912406575648} a^{2} - \frac{480714876922216490959629359533414990663657337}{1539399118392645758598110278477727728101643912} a + \frac{1538146849840783673959351253375648830483608225}{6157596473570583034392441113910910912406575648}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20557469.1162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.26353.1, 8.0.50697084457.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| $73$ | 73.8.7.7 | $x^{8} + 228125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.0.1 | $x^{8} - x + 40$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |