Normalized defining polynomial
\( x^{16} - 4 x^{15} + 96 x^{14} - 236 x^{13} + 2231 x^{12} + 2057 x^{11} - 19522 x^{10} + 283427 x^{9} - 841908 x^{8} + 3596219 x^{7} - 2112483 x^{6} - 3867184 x^{5} + 179699696 x^{4} - 919387662 x^{3} + 5609396159 x^{2} - 14310734897 x + 47938335701 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2442744860101307576054633212890625=5^{10}\cdot 29^{6}\cdot 41^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{75} a^{14} + \frac{2}{75} a^{13} - \frac{4}{75} a^{12} - \frac{34}{75} a^{11} + \frac{1}{5} a^{9} - \frac{7}{75} a^{8} + \frac{1}{15} a^{7} + \frac{31}{75} a^{6} - \frac{2}{5} a^{5} - \frac{2}{15} a^{4} - \frac{34}{75} a^{3} + \frac{4}{25} a^{2} - \frac{32}{75} a + \frac{23}{75}$, $\frac{1}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{15} - \frac{3311997217667048305265831475009766124528005396127396880672489747399}{600872083106710051749285884582043314514406544235509339796841964203325} a^{14} - \frac{32698799769576139896585277271657918126263528277626364320406581584047}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{13} - \frac{153493004908374568675215743236623278904732980337057695256812584609268}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{12} + \frac{305362229224127096881817951114594461272973255869717943294245113008841}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{11} + \frac{56742589474859354361263519880847128024653215321546521009240467040309}{120174416621342010349857176916408662902881308847101867959368392840665} a^{10} + \frac{312619595945633943026786639238038323149962814124563244224186479637083}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{9} + \frac{401759206857365142026055551627677883267816921528349296066501377252783}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{8} - \frac{141472651918270023565254173180641949770177558972583168348528100268763}{600872083106710051749285884582043314514406544235509339796841964203325} a^{7} + \frac{857531445422549418911708204666988738010658656401663421560000485314846}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{6} - \frac{118903833685402927711649514199180296413216017709955133708370806630943}{360523249864026031049571530749225988708643926541305603878105178521995} a^{5} + \frac{357724332022822626515671149784212764034247594857022585160534795197246}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{4} - \frac{130182490417315842938393743397177023374964428579509871451012885111282}{1802616249320130155247857653746129943543219632706528019390525892609975} a^{3} + \frac{19728637634538724416394334922018746383321022137858074493990880489519}{360523249864026031049571530749225988708643926541305603878105178521995} a^{2} - \frac{159225150758095081348563742243968654975587895028715962642843325512078}{600872083106710051749285884582043314514406544235509339796841964203325} a + \frac{308877392704396031240073171050514211595580930219298873215652856679293}{1802616249320130155247857653746129943543219632706528019390525892609975}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1589761353.25 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.29725.1, 4.4.725.1, 4.0.1025.1, 8.0.883575625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |