Normalized defining polynomial
\( x^{16} - 5 x^{15} - 46 x^{14} + 125 x^{13} + 1312 x^{12} + 1520 x^{11} - 16878 x^{10} - 77990 x^{9} + 115330 x^{8} + 973820 x^{7} - 2205112 x^{6} - 14067960 x^{5} + 11437842 x^{4} + 133312655 x^{3} + 206802536 x^{2} + 88567160 x + 12313081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(243894230940323342291259765625=5^{14}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} + \frac{2}{11} a^{8} - \frac{3}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} + \frac{3}{11} a^{4} - \frac{4}{11} a^{3} + \frac{4}{11} a^{2} + \frac{3}{11} a$, $\frac{1}{11} a^{10} + \frac{4}{11} a^{8} - \frac{3}{11} a^{7} - \frac{1}{11} a^{6} - \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} - \frac{5}{11} a^{2} + \frac{5}{11} a$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{2299} a^{13} - \frac{90}{2299} a^{12} - \frac{2}{2299} a^{11} + \frac{8}{2299} a^{10} + \frac{81}{2299} a^{9} - \frac{510}{2299} a^{8} + \frac{294}{2299} a^{7} + \frac{75}{209} a^{6} - \frac{232}{2299} a^{5} + \frac{1032}{2299} a^{4} - \frac{823}{2299} a^{3} - \frac{24}{209} a^{2} + \frac{769}{2299} a - \frac{6}{19}$, $\frac{1}{12899689} a^{14} - \frac{2524}{12899689} a^{13} - \frac{3527}{12899689} a^{12} - \frac{353350}{12899689} a^{11} + \frac{520456}{12899689} a^{10} - \frac{153774}{12899689} a^{9} - \frac{3893287}{12899689} a^{8} - \frac{366995}{12899689} a^{7} + \frac{1870967}{12899689} a^{6} - \frac{6393771}{12899689} a^{5} + \frac{5651247}{12899689} a^{4} + \frac{6096183}{12899689} a^{3} - \frac{4993594}{12899689} a^{2} + \frac{2606398}{12899689} a + \frac{31514}{106609}$, $\frac{1}{235927484147341172106625598144604521995661659} a^{15} - \frac{2092330758953219326283246064862979224}{235927484147341172106625598144604521995661659} a^{14} + \frac{20581032999601240455510054542900787894475}{235927484147341172106625598144604521995661659} a^{13} - \frac{662410784695388804060378967798581036743994}{21447953104303742918784145285873138363241969} a^{12} - \frac{5265186599768769586375825267445369545045349}{235927484147341172106625598144604521995661659} a^{11} - \frac{3311734829118701436790971522525351563524182}{235927484147341172106625598144604521995661659} a^{10} - \frac{108778142401702423465285831830790323743970}{8135430487839350762297434418779466275712471} a^{9} - \frac{23312438809616617472367778123312349665893915}{235927484147341172106625598144604521995661659} a^{8} + \frac{116133386087446378123793755119853730659182810}{235927484147341172106625598144604521995661659} a^{7} - \frac{1058293095258215053342506882501913693461390}{8135430487839350762297434418779466275712471} a^{6} + \frac{19834864982250017731018819948533029194826557}{235927484147341172106625598144604521995661659} a^{5} + \frac{82215256769235966629973401457859541299743118}{235927484147341172106625598144604521995661659} a^{4} + \frac{44665671192274596655399527622808904444475715}{235927484147341172106625598144604521995661659} a^{3} - \frac{98964052825328975187878967784433128894248043}{235927484147341172106625598144604521995661659} a^{2} + \frac{5391445371732409372484312407428498893106452}{21447953104303742918784145285873138363241969} a + \frac{462425821730483570992142596039128758913}{6112269337219647454768921426581116660941}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{31441485324216947426343466419334100115}{235927484147341172106625598144604521995661659} a^{15} + \frac{184591114402795987283018775367952479842}{235927484147341172106625598144604521995661659} a^{14} + \frac{1256004282352759375245263120751608407879}{235927484147341172106625598144604521995661659} a^{13} - \frac{432656785575521600549130276334272140275}{21447953104303742918784145285873138363241969} a^{12} - \frac{36594798994684740122728173868027060569673}{235927484147341172106625598144604521995661659} a^{11} - \frac{22499800837012370012624685792956877673211}{235927484147341172106625598144604521995661659} a^{10} + \frac{18296471418928654632199234476218084943482}{8135430487839350762297434418779466275712471} a^{9} + \frac{2029335856125408007545439728367251186558038}{235927484147341172106625598144604521995661659} a^{8} - \frac{4877600428191850719504013405825786513993895}{235927484147341172106625598144604521995661659} a^{7} - \frac{879567804268895112861929284408941621325645}{8135430487839350762297434418779466275712471} a^{6} + \frac{84050169395624331372506840058208351303988252}{235927484147341172106625598144604521995661659} a^{5} + \frac{361117355653314344643003666761746857767183379}{235927484147341172106625598144604521995661659} a^{4} - \frac{570999628678779247735933760401749407414761622}{235927484147341172106625598144604521995661659} a^{3} - \frac{3592839333808971647552496540293073913937804983}{235927484147341172106625598144604521995661659} a^{2} - \frac{390957472851074964680214026201786478006301367}{21447953104303742918784145285873138363241969} a - \frac{27373201149140124573127765319437389765584}{6112269337219647454768921426581116660941} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 286364980.697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-215}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{5}, \sqrt{-43})\), 4.4.231125.1, \(\Q(\zeta_{5})\), 8.0.53418765625.1, 8.4.493856488203125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 43 | Data not computed | ||||||