Normalized defining polynomial
\( x^{16} + 192 x^{14} + 17916 x^{12} + 1013056 x^{10} + 38045364 x^{8} + 973354368 x^{6} + 17044358464 x^{4} + 186876209664 x^{2} + 1092493210176 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24313966763341113270967730176000000000000=2^{48}\cdot 5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $334.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2320=2^{4}\cdot 5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2320}(1,·)$, $\chi_{2320}(1989,·)$, $\chi_{2320}(1607,·)$, $\chi_{2320}(521,·)$, $\chi_{2320}(1549,·)$, $\chi_{2320}(1683,·)$, $\chi_{2320}(987,·)$, $\chi_{2320}(289,·)$, $\chi_{2320}(1507,·)$, $\chi_{2320}(423,·)$, $\chi_{2320}(2089,·)$, $\chi_{2320}(2221,·)$, $\chi_{2320}(2203,·)$, $\chi_{2320}(1781,·)$, $\chi_{2320}(2047,·)$, $\chi_{2320}(2303,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{5} + \frac{1}{3} a$, $\frac{1}{36} a^{6} - \frac{1}{18} a^{4} + \frac{5}{18} a^{2}$, $\frac{1}{36} a^{7} - \frac{1}{18} a^{5} - \frac{1}{18} a^{3} + \frac{1}{3} a$, $\frac{1}{72} a^{8} - \frac{1}{12} a^{4} + \frac{4}{9} a^{2}$, $\frac{1}{1296} a^{9} - \frac{1}{108} a^{7} - \frac{1}{216} a^{5} - \frac{13}{81} a^{3} - \frac{7}{18} a$, $\frac{1}{1296} a^{10} + \frac{1}{216} a^{8} - \frac{1}{216} a^{6} - \frac{25}{324} a^{4} + \frac{7}{18} a^{2}$, $\frac{1}{7776} a^{11} + \frac{1}{3888} a^{9} + \frac{7}{1296} a^{7} - \frac{73}{1944} a^{5} + \frac{59}{972} a^{3} + \frac{17}{54} a$, $\frac{1}{86927904} a^{12} - \frac{827}{10865988} a^{10} - \frac{7331}{14487984} a^{8} + \frac{9463}{10865988} a^{6} + \frac{76505}{2716497} a^{4} - \frac{1280}{301833} a^{2} - \frac{5409}{11179}$, $\frac{1}{86927904} a^{13} + \frac{169}{3219552} a^{11} - \frac{5407}{21731976} a^{9} + \frac{272611}{43463952} a^{7} - \frac{68009}{7243992} a^{5} + \frac{613481}{10865988} a^{3} - \frac{102043}{603666} a$, $\frac{1}{505428941074766688} a^{14} + \frac{518774341}{505428941074766688} a^{12} + \frac{10717793635997}{36102067219626192} a^{10} + \frac{873374983676851}{252714470537383344} a^{8} + \frac{751039652559937}{63178617634345836} a^{6} + \frac{1217805677481805}{15794654408586459} a^{4} - \frac{121445389196716}{250708800136293} a^{2} + \frac{171280262142}{2407354733819}$, $\frac{1}{1630513763907197335488} a^{15} - \frac{3688943370001}{815256881953598667744} a^{13} - \frac{451604941036127}{25476777561049958367} a^{11} + \frac{30451860849157043}{101907110244199833468} a^{9} - \frac{1660083322953376639}{407628440976799333872} a^{7} + \frac{1911994917800048905}{29116317212628523848} a^{5} - \frac{1704761062821226997}{11323012249355537052} a^{3} - \frac{17192849001495197}{209685412025102538} a$
Class group and class number
$C_{2}\times C_{4}\times C_{8}\times C_{1927120}$, which has order $123335680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 394683673.28410536 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| 5 | Data not computed | ||||||
| 29 | Data not computed | ||||||