Normalized defining polynomial
\( x^{16} - 2 x^{15} + 15 x^{14} - 37 x^{13} + 107 x^{12} - 261 x^{11} + 518 x^{10} - 934 x^{9} + 1884 x^{8} - 2843 x^{7} + 4132 x^{6} - 6093 x^{5} + 6762 x^{4} - 6354 x^{3} + 5616 x^{2} - 3159 x + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2421961621595988176961=3^{8}\cdot 157^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{9} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{1}{27} a^{5} - \frac{10}{27} a^{4} + \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{351} a^{14} - \frac{4}{351} a^{13} + \frac{8}{351} a^{12} + \frac{7}{351} a^{11} + \frac{4}{117} a^{10} + \frac{2}{27} a^{8} - \frac{50}{351} a^{7} - \frac{44}{351} a^{6} + \frac{101}{351} a^{5} - \frac{4}{117} a^{4} + \frac{11}{39} a^{3} + \frac{4}{39} a^{2} - \frac{8}{39} a - \frac{6}{13}$, $\frac{1}{17943112340995023} a^{15} + \frac{17312325028204}{17943112340995023} a^{14} - \frac{4412473152461}{460079803615257} a^{13} - \frac{678908150958547}{17943112340995023} a^{12} - \frac{960803781991}{197177058692253} a^{11} - \frac{257071312244687}{5981037446998341} a^{10} - \frac{34824158365798}{1380239410845771} a^{9} - \frac{997984452368551}{17943112340995023} a^{8} + \frac{257681107614311}{5981037446998341} a^{7} + \frac{90916320824719}{1380239410845771} a^{6} - \frac{1704739930573178}{17943112340995023} a^{5} + \frac{1219410520904315}{5981037446998341} a^{4} - \frac{65250255350606}{460079803615257} a^{3} - \frac{20647074966983}{153359934538419} a^{2} - \frac{479402638045}{13030582673199} a + \frac{6920295832518}{73839968481461}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2610536285}{431459647029} a^{15} + \frac{3947185810}{431459647029} a^{14} - \frac{12397139234}{143819882343} a^{13} + \frac{79193318672}{431459647029} a^{12} - \frac{240431173762}{431459647029} a^{11} + \frac{190849287130}{143819882343} a^{10} - \frac{1079406520147}{431459647029} a^{9} + \frac{1945497824936}{431459647029} a^{8} - \frac{1342710093058}{143819882343} a^{7} + \frac{5544483366049}{431459647029} a^{6} - \frac{8185049950280}{431459647029} a^{5} + \frac{4112805605471}{143819882343} a^{4} - \frac{3952710667364}{143819882343} a^{3} + \frac{1239716946181}{47939960781} a^{2} - \frac{2381491259}{104444359} a + \frac{15298246709}{1775554103} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 219939.617486 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-471}) \), \(\Q(\sqrt{157}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{157})\), 4.2.73947.1 x2, 4.0.1413.1 x2, 8.0.49213429281.1, 8.2.16404476427.1 x4, 8.0.313461333.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $157$ | 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 157.2.1.1 | $x^{2} - 157$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |