Normalized defining polynomial
\( x^{16} - 6 x^{15} + 9 x^{14} + 76 x^{13} - 257 x^{12} + 72 x^{11} + 1069 x^{10} + 2288 x^{9} - 3048 x^{8} - 26060 x^{7} + 141119 x^{6} - 44446 x^{5} - 197231 x^{4} + 2236473 x^{3} - 148671 x^{2} - 11428128 x + 15512391 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(242099589496868228963210570137=23^{12}\cdot 73^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{3} a^{10} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{5} - \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{369} a^{14} - \frac{13}{369} a^{13} + \frac{49}{369} a^{12} + \frac{3}{41} a^{11} + \frac{7}{369} a^{10} + \frac{122}{369} a^{9} - \frac{142}{369} a^{8} + \frac{4}{123} a^{7} + \frac{17}{123} a^{6} - \frac{92}{369} a^{5} + \frac{49}{369} a^{4} + \frac{124}{369} a^{3} + \frac{46}{123} a^{2} + \frac{6}{41} a$, $\frac{1}{16445999195633399158247385809975630564107743579} a^{15} - \frac{1517191936540481053582032656644093988296574}{5481999731877799719415795269991876854702581193} a^{14} + \frac{35568848186601359323620052195212956471760437}{1827333243959266573138598423330625618234193731} a^{13} - \frac{1178074292952259646682145275123358577140258778}{16445999195633399158247385809975630564107743579} a^{12} - \frac{1708178421756648517497567529667370728339941814}{16445999195633399158247385809975630564107743579} a^{11} - \frac{115111074655728470678758151179012542670221698}{1827333243959266573138598423330625618234193731} a^{10} - \frac{5699322869998064485328696311363532102108718260}{16445999195633399158247385809975630564107743579} a^{9} + \frac{2513870439366815714669651970856138737771938192}{16445999195633399158247385809975630564107743579} a^{8} + \frac{1517178622381643575844516074937366615510836765}{5481999731877799719415795269991876854702581193} a^{7} - \frac{6442760005041882371060174428736478273814429532}{16445999195633399158247385809975630564107743579} a^{6} + \frac{2112085270591514852613505142113518286170586292}{16445999195633399158247385809975630564107743579} a^{5} - \frac{5421027200801097761149362919021294101417728164}{16445999195633399158247385809975630564107743579} a^{4} - \frac{7720247138475260962756950546812833229485475345}{16445999195633399158247385809975630564107743579} a^{3} + \frac{882539649111727364901704040012217820945443909}{1827333243959266573138598423330625618234193731} a^{2} + \frac{549070150311625974778567935054960925602696602}{1827333243959266573138598423330625618234193731} a + \frac{10902597023911526103297991306028042482857}{28624986198588069194019117805201146956063}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 704664552.281 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.38617.1, 8.0.108862906297.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| $73$ | 73.8.0.1 | $x^{8} - x + 40$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 73.8.7.6 | $x^{8} + 9125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |