Properties

Label 16.0.24206677051...5849.5
Degree $16$
Signature $[0, 8]$
Discriminant $7^{12}\cdot 53^{10}$
Root discriminant $51.46$
Ramified primes $7, 53$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5248681, 0, 1204062, 0, 591167, 0, 178205, 0, 42647, 0, 3960, 0, 306, 0, 27, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 27*x^14 + 306*x^12 + 3960*x^10 + 42647*x^8 + 178205*x^6 + 591167*x^4 + 1204062*x^2 + 5248681)
 
gp: K = bnfinit(x^16 + 27*x^14 + 306*x^12 + 3960*x^10 + 42647*x^8 + 178205*x^6 + 591167*x^4 + 1204062*x^2 + 5248681, 1)
 

Normalized defining polynomial

\( x^{16} + 27 x^{14} + 306 x^{12} + 3960 x^{10} + 42647 x^{8} + 178205 x^{6} + 591167 x^{4} + 1204062 x^{2} + 5248681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2420667705185442556922185849=7^{12}\cdot 53^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{24637761501595718079272} a^{14} + \frac{48588861393878505801}{362320022082289971754} a^{12} + \frac{179968444371846505249}{724640044164579943508} a^{10} + \frac{427687892781346266201}{12318880750797859039636} a^{8} - \frac{12199234539488708138615}{24637761501595718079272} a^{6} + \frac{1046233036018247274117}{12318880750797859039636} a^{4} - \frac{1}{2} a^{3} - \frac{1994642719128704709539}{24637761501595718079272} a^{2} - \frac{1}{2} a + \frac{9369293409200587325887}{24637761501595718079272}$, $\frac{1}{112890223200311580239224304} a^{15} - \frac{1}{49275523003191436158544} a^{14} - \frac{362271433220896093248199}{1660150341181052650576828} a^{13} - \frac{48588861393878505801}{724640044164579943508} a^{12} - \frac{820474881572014939517561}{3320300682362105301153656} a^{11} + \frac{182351577710443466505}{1449280088329159887016} a^{10} + \frac{1497171699114721219581975}{56445111600155790119612152} a^{9} + \frac{5731752482617583253617}{24637761501595718079272} a^{8} - \frac{15521670099793993239040339}{112890223200311580239224304} a^{7} - \frac{119646211309150901021}{49275523003191436158544} a^{6} - \frac{271404088507717713070803}{1946383158626061728262488} a^{5} - \frac{1046233036018247274117}{24637761501595718079272} a^{4} - \frac{45520259016917217856164559}{112890223200311580239224304} a^{3} + \frac{14313523469926563749175}{49275523003191436158544} a^{2} + \frac{11835494814175145265376447}{112890223200311580239224304} a - \frac{9369293409200587325887}{49275523003191436158544}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5679394.02743 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{-7}) \), 4.0.2597.2, 8.0.357453677.2, 8.0.49200281555957.2, 8.0.928307199169.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$7$7.8.6.2$x^{8} - 49 x^{4} + 3969$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
7.8.6.2$x^{8} - 49 x^{4} + 3969$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$53$53.2.1.2$x^{2} + 106$$2$$1$$1$$C_2$$[\ ]_{2}$
53.2.1.2$x^{2} + 106$$2$$1$$1$$C_2$$[\ ]_{2}$
53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.8.6.1$x^{8} - 1643 x^{4} + 1755625$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$