Normalized defining polynomial
\( x^{16} - 6 x^{15} - 6 x^{14} + 44 x^{13} + 162 x^{12} - 479 x^{11} - 287 x^{10} + 2522 x^{9} + 3180 x^{8} - 9028 x^{7} - 10699 x^{6} + 401 x^{5} + 17424 x^{4} + 6594 x^{3} + 99876 x^{2} - 192542 x + 220367 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2420667705185442556922185849=7^{12}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{10} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{3}{14} a^{6} + \frac{3}{14} a^{5} + \frac{1}{7} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{154} a^{12} - \frac{2}{77} a^{11} - \frac{5}{154} a^{10} + \frac{13}{77} a^{9} + \frac{2}{77} a^{8} + \frac{3}{14} a^{7} - \frac{3}{77} a^{6} + \frac{23}{154} a^{5} - \frac{16}{77} a^{4} + \frac{1}{22} a^{2} - \frac{2}{11} a - \frac{5}{22}$, $\frac{1}{308} a^{13} - \frac{5}{154} a^{11} + \frac{17}{308} a^{10} - \frac{17}{77} a^{9} - \frac{17}{308} a^{8} - \frac{18}{77} a^{7} - \frac{39}{154} a^{6} + \frac{115}{308} a^{5} + \frac{5}{22} a^{4} + \frac{1}{44} a^{3} - \frac{1}{2} a^{2} - \frac{5}{22} a - \frac{9}{44}$, $\frac{1}{303688} a^{14} - \frac{171}{303688} a^{13} - \frac{201}{75922} a^{12} - \frac{1091}{43384} a^{11} + \frac{3767}{303688} a^{10} - \frac{114897}{303688} a^{9} + \frac{11573}{27608} a^{8} + \frac{30003}{75922} a^{7} + \frac{60897}{303688} a^{6} - \frac{2949}{17864} a^{5} - \frac{150455}{303688} a^{4} + \frac{18727}{43384} a^{3} - \frac{7915}{21692} a^{2} - \frac{1019}{43384} a - \frac{5975}{43384}$, $\frac{1}{2798140210063693507537801625272} a^{15} - \frac{19169886022783552181329}{699535052515923376884450406318} a^{14} - \frac{92450702777979932280257569}{57104902246197826684444931128} a^{13} + \frac{7891285976551940359140499163}{2798140210063693507537801625272} a^{12} - \frac{18823592870995652168955051831}{699535052515923376884450406318} a^{11} + \frac{36827938184694051830961}{16975297932876880702867102} a^{10} - \frac{14739390653446545912588454396}{49966789465423098348889314737} a^{9} - \frac{935129738566185290082022940275}{2798140210063693507537801625272} a^{8} + \frac{88719691456896420504262045547}{254376382733063046139800147752} a^{7} + \frac{7295445473289827145420412561}{28552451123098913342222465564} a^{6} + \frac{48643347379550127713482017447}{127188191366531523069900073876} a^{5} + \frac{54631284440555428030751522304}{349767526257961688442225203159} a^{4} - \frac{55009695218400680016453763125}{399734315723384786791114517896} a^{3} + \frac{46153119664097023953030627639}{399734315723384786791114517896} a^{2} - \frac{2091469830685007611739778209}{9084870811895108790707148134} a + \frac{129181198706923558555064252547}{399734315723384786791114517896}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13170551.5373 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-371}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{-7}) \), 4.0.2597.2 x2, \(\Q(\sqrt{-7}, \sqrt{53})\), 4.2.19663.1 x2, 8.0.928307199169.1 x2, 8.0.49200281555957.1 x2, 8.0.18945044881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 53 | Data not computed | ||||||