Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 80 x^{13} + 88 x^{12} + 96 x^{11} - 704 x^{10} + 1048 x^{9} + 1112 x^{8} - 2376 x^{7} + 1368 x^{6} + 2080 x^{5} - 2416 x^{4} - 576 x^{3} + 2104 x^{2} - 1496 x + 401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24073289246567116570624=2^{58}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7709} a^{14} - \frac{1903}{7709} a^{13} + \frac{175}{593} a^{12} + \frac{3320}{7709} a^{11} - \frac{196}{7709} a^{10} - \frac{1019}{7709} a^{9} + \frac{1}{593} a^{8} + \frac{3018}{7709} a^{7} - \frac{121}{593} a^{6} + \frac{3310}{7709} a^{5} - \frac{1065}{7709} a^{4} - \frac{2161}{7709} a^{3} + \frac{1965}{7709} a^{2} + \frac{391}{7709} a - \frac{3010}{7709}$, $\frac{1}{58025941937878111515877} a^{15} - \frac{1095759637586670588}{58025941937878111515877} a^{14} - \frac{10059927611087686031054}{58025941937878111515877} a^{13} + \frac{24336780841796006197346}{58025941937878111515877} a^{12} - \frac{25787909645239565164338}{58025941937878111515877} a^{11} + \frac{421351406190082043197}{58025941937878111515877} a^{10} - \frac{12880417443763210793690}{58025941937878111515877} a^{9} + \frac{25278339455383309749599}{58025941937878111515877} a^{8} + \frac{1580074545700116497199}{58025941937878111515877} a^{7} - \frac{2486729951813243032291}{58025941937878111515877} a^{6} - \frac{20858132167771338737651}{58025941937878111515877} a^{5} + \frac{4550812805305611819549}{58025941937878111515877} a^{4} - \frac{9408254199392077062348}{58025941937878111515877} a^{3} + \frac{508011217072537387554}{4463533995221393193529} a^{2} - \frac{11961929535775269800270}{58025941937878111515877} a - \frac{28583930376248726795982}{58025941937878111515877}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{121085215078204695040}{58025941937878111515877} a^{15} - \frac{880898241839033019155}{58025941937878111515877} a^{14} + \frac{3331987590598618656740}{58025941937878111515877} a^{13} - \frac{7774547153036831359087}{58025941937878111515877} a^{12} + \frac{6649790934374865378929}{58025941937878111515877} a^{11} + \frac{13828577361613685653131}{58025941937878111515877} a^{10} - \frac{76421848906322911079131}{58025941937878111515877} a^{9} + \frac{84616194255518468787624}{58025941937878111515877} a^{8} + \frac{152913992934521617940712}{58025941937878111515877} a^{7} - \frac{189936702505497827693087}{58025941937878111515877} a^{6} + \frac{129486408720277301491036}{58025941937878111515877} a^{5} + \frac{303023994230515753657951}{58025941937878111515877} a^{4} - \frac{121743682315803219600229}{58025941937878111515877} a^{3} - \frac{32184499915039369447426}{58025941937878111515877} a^{2} + \frac{208743124082762238695793}{58025941937878111515877} a - \frac{95804163468564611830734}{58025941937878111515877} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 209331.862536 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |