Normalized defining polynomial
\( x^{16} + 16 x^{14} - 32 x^{13} + 108 x^{12} - 384 x^{11} + 768 x^{10} - 1904 x^{9} + 4188 x^{8} - 6912 x^{7} + 13072 x^{6} - 22432 x^{5} + 27504 x^{4} - 28736 x^{3} + 26080 x^{2} - 14912 x + 3592 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24073289246567116570624=2^{58}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{68} a^{13} - \frac{7}{68} a^{12} - \frac{5}{68} a^{11} - \frac{5}{34} a^{10} - \frac{7}{34} a^{9} - \frac{3}{17} a^{8} - \frac{3}{34} a^{7} + \frac{1}{34} a^{6} - \frac{3}{17} a^{5} + \frac{7}{17} a^{4} + \frac{7}{17} a^{3} + \frac{3}{17} a^{2} + \frac{5}{17} a - \frac{2}{17}$, $\frac{1}{1292} a^{14} - \frac{1}{323} a^{13} + \frac{2}{323} a^{12} - \frac{25}{1292} a^{11} + \frac{23}{323} a^{10} - \frac{5}{34} a^{9} - \frac{55}{646} a^{8} + \frac{9}{646} a^{7} - \frac{78}{323} a^{6} + \frac{15}{323} a^{5} + \frac{45}{323} a^{4} + \frac{160}{323} a^{3} - \frac{88}{323} a^{2} - \frac{89}{323} a + \frac{96}{323}$, $\frac{1}{77577281778071208436} a^{15} + \frac{5855751890608114}{19394320444517802109} a^{14} - \frac{207095546092725881}{38788640889035604218} a^{13} - \frac{2985117633818389037}{38788640889035604218} a^{12} - \frac{6111493124641897681}{77577281778071208436} a^{11} - \frac{1460524320537065}{5972996749158547} a^{10} + \frac{9036811811200857861}{38788640889035604218} a^{9} + \frac{1569683637216196717}{19394320444517802109} a^{8} + \frac{117742847333659875}{2041507415212400222} a^{7} + \frac{6570893409821779421}{38788640889035604218} a^{6} + \frac{1070599008642917616}{19394320444517802109} a^{5} + \frac{7300711893980079087}{19394320444517802109} a^{4} + \frac{7733274936096850}{60044335741541183} a^{3} - \frac{445146406492426493}{19394320444517802109} a^{2} + \frac{1515620754755217394}{19394320444517802109} a - \frac{5265341465078828215}{19394320444517802109}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{854619493220024581}{77577281778071208436} a^{15} + \frac{472494107532292263}{38788640889035604218} a^{14} + \frac{3671838094942320736}{19394320444517802109} a^{13} - \frac{11141618271468825555}{77577281778071208436} a^{12} + \frac{39711170682474053581}{38788640889035604218} a^{11} - \frac{314108224470853900}{101540944735695299} a^{10} + \frac{193859133589933353715}{38788640889035604218} a^{9} - \frac{297472253639090538992}{19394320444517802109} a^{8} + \frac{561891619779912564228}{19394320444517802109} a^{7} - \frac{1688174679371675552033}{38788640889035604218} a^{6} + \frac{1838439844780301464174}{19394320444517802109} a^{5} - \frac{2727225454557692582988}{19394320444517802109} a^{4} + \frac{2791826873976322372216}{19394320444517802109} a^{3} - \frac{155532611004384363014}{1020753707606200111} a^{2} + \frac{2203030704246453118558}{19394320444517802109} a - \frac{649353253793129842311}{19394320444517802109} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 233059.010847 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |