Normalized defining polynomial
\( x^{16} + 16 x^{14} - 24 x^{13} - 44 x^{12} - 120 x^{11} - 136 x^{10} + 528 x^{9} + 1078 x^{8} + 1008 x^{7} - 800 x^{6} - 4256 x^{5} - 5052 x^{4} - 1168 x^{3} + 6024 x^{2} + 8672 x + 3554 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24073289246567116570624=2^{58}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} - \frac{8}{17} a^{10} - \frac{6}{17} a^{9} - \frac{5}{17} a^{8} + \frac{1}{17} a^{7} + \frac{6}{17} a^{5} - \frac{1}{17} a^{4} - \frac{5}{17} a^{2} - \frac{6}{17} a - \frac{5}{17}$, $\frac{1}{17} a^{12} - \frac{2}{17} a^{10} - \frac{2}{17} a^{9} - \frac{5}{17} a^{8} + \frac{8}{17} a^{7} + \frac{6}{17} a^{6} - \frac{4}{17} a^{5} - \frac{8}{17} a^{4} - \frac{5}{17} a^{3} + \frac{5}{17} a^{2} - \frac{2}{17} a - \frac{6}{17}$, $\frac{1}{17} a^{13} - \frac{1}{17} a^{10} - \frac{2}{17} a^{8} + \frac{8}{17} a^{7} - \frac{4}{17} a^{6} + \frac{4}{17} a^{5} - \frac{7}{17} a^{4} + \frac{5}{17} a^{3} + \frac{5}{17} a^{2} - \frac{1}{17} a + \frac{7}{17}$, $\frac{1}{17} a^{14} - \frac{8}{17} a^{10} - \frac{8}{17} a^{9} + \frac{3}{17} a^{8} - \frac{3}{17} a^{7} + \frac{4}{17} a^{6} - \frac{1}{17} a^{5} + \frac{4}{17} a^{4} + \frac{5}{17} a^{3} - \frac{6}{17} a^{2} + \frac{1}{17} a - \frac{5}{17}$, $\frac{1}{458345331793377073} a^{15} - \frac{8151090011901263}{458345331793377073} a^{14} - \frac{11433719529764835}{458345331793377073} a^{13} + \frac{8468832425244797}{458345331793377073} a^{12} + \frac{2867023540482445}{458345331793377073} a^{11} + \frac{211910266927328759}{458345331793377073} a^{10} - \frac{201641302731133682}{458345331793377073} a^{9} - \frac{47243339632764002}{458345331793377073} a^{8} - \frac{210428089333121811}{458345331793377073} a^{7} + \frac{182645209662596337}{458345331793377073} a^{6} - \frac{180651762921050981}{458345331793377073} a^{5} - \frac{132309465429611496}{458345331793377073} a^{4} + \frac{13323688206092065}{458345331793377073} a^{3} - \frac{143171665427786098}{458345331793377073} a^{2} - \frac{55173219313624554}{458345331793377073} a + \frac{205659586052917463}{458345331793377073}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1061639828456223397}{458345331793377073} a^{15} - \frac{1217170392861450793}{458345331793377073} a^{14} + \frac{18381670836848134724}{458345331793377073} a^{13} - \frac{46552950466923294146}{458345331793377073} a^{12} + \frac{6658833164523639369}{458345331793377073} a^{11} - \frac{135010970767047302145}{458345331793377073} a^{10} + \frac{10364890077238322694}{458345331793377073} a^{9} + \frac{548705059925172540196}{458345331793377073} a^{8} + \frac{515181867711445164344}{458345331793377073} a^{7} + \frac{479469097476685324064}{458345331793377073} a^{6} - \frac{1398881297398243981832}{458345331793377073} a^{5} - \frac{2914239037927240134872}{458345331793377073} a^{4} - \frac{2021325717611248794942}{458345331793377073} a^{3} + \frac{1077553992884958806841}{458345331793377073} a^{2} + \frac{5159620986135971504868}{458345331793377073} a + \frac{3289585095610881421683}{458345331793377073} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 218138.246981 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.0.2048.2, \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |