Normalized defining polynomial
\( x^{16} - 16 x^{14} + 144 x^{12} - 880 x^{10} + 4130 x^{8} - 14960 x^{6} + 41616 x^{4} - 78608 x^{2} + 83521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24073289246567116570624=2^{58}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{136} a^{10} + \frac{1}{136} a^{8} - \frac{15}{34} a^{6} + \frac{1}{34} a^{4} - \frac{35}{136} a^{2} - \frac{3}{8}$, $\frac{1}{136} a^{11} + \frac{1}{136} a^{9} - \frac{15}{34} a^{7} + \frac{1}{34} a^{5} - \frac{35}{136} a^{3} - \frac{3}{8} a$, $\frac{1}{2312} a^{12} + \frac{1}{2312} a^{10} - \frac{16}{289} a^{8} + \frac{103}{578} a^{6} - \frac{715}{2312} a^{4} + \frac{37}{136} a^{2} - \frac{1}{2}$, $\frac{1}{2312} a^{13} + \frac{1}{2312} a^{11} - \frac{16}{289} a^{9} + \frac{103}{578} a^{7} - \frac{715}{2312} a^{5} + \frac{37}{136} a^{3} - \frac{1}{2} a$, $\frac{1}{13874312} a^{14} - \frac{1699}{13874312} a^{12} + \frac{3085}{13874312} a^{10} + \frac{311017}{6937156} a^{8} - \frac{1}{2} a^{7} + \frac{325413}{13874312} a^{6} - \frac{1}{2} a^{5} + \frac{164629}{816136} a^{4} - \frac{1}{2} a^{3} + \frac{10473}{48008} a^{2} - \frac{1}{2} a + \frac{665}{1412}$, $\frac{1}{27748624} a^{15} - \frac{1}{27748624} a^{14} - \frac{1699}{27748624} a^{13} + \frac{1699}{27748624} a^{12} + \frac{3085}{27748624} a^{11} - \frac{3085}{27748624} a^{10} - \frac{1112255}{27748624} a^{9} + \frac{1112255}{27748624} a^{8} - \frac{6611743}{27748624} a^{7} - \frac{7262569}{27748624} a^{6} - \frac{651507}{1632272} a^{5} - \frac{164629}{1632272} a^{4} - \frac{13531}{96016} a^{3} - \frac{34477}{96016} a^{2} - \frac{1847}{5648} a - \frac{977}{5648}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2169}{13874312} a^{14} - \frac{12519}{13874312} a^{12} + \frac{15065}{3468578} a^{10} - \frac{10637}{1734289} a^{8} - \frac{136843}{13874312} a^{6} + \frac{236837}{816136} a^{4} - \frac{5026}{6001} a^{2} + \frac{1955}{706} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 235822.571985 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |