Normalized defining polynomial
\( x^{16} - x^{15} + 4 x^{14} - 10 x^{12} + 250 x^{11} - 784 x^{10} + 347 x^{9} + 3305 x^{8} + 2519 x^{7} + 13315 x^{6} - 40402 x^{5} + 127119 x^{4} - 96554 x^{3} + 14387 x^{2} + 40872 x + 10161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(240414920542051180813313277797=11^{10}\cdot 53^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{35} a^{13} - \frac{11}{35} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{13}{35} a^{9} + \frac{2}{35} a^{8} - \frac{3}{7} a^{7} - \frac{12}{35} a^{6} + \frac{16}{35} a^{5} + \frac{4}{35} a^{4} + \frac{4}{35} a^{3} + \frac{1}{35} a^{2} - \frac{9}{35} a - \frac{17}{35}$, $\frac{1}{1785} a^{14} + \frac{1}{85} a^{13} - \frac{233}{1785} a^{12} - \frac{1}{15} a^{11} + \frac{271}{595} a^{10} + \frac{286}{1785} a^{9} - \frac{41}{85} a^{8} + \frac{383}{1785} a^{7} - \frac{368}{1785} a^{6} + \frac{277}{595} a^{5} + \frac{832}{1785} a^{4} - \frac{202}{595} a^{3} + \frac{31}{595} a^{2} + \frac{10}{21} a + \frac{87}{595}$, $\frac{1}{385020435408283559525986002947966985} a^{15} - \frac{34266801009257222352660534800807}{385020435408283559525986002947966985} a^{14} - \frac{1479109021125213651900547044405347}{385020435408283559525986002947966985} a^{13} + \frac{187024622869788931417632735293851391}{385020435408283559525986002947966985} a^{12} + \frac{144314454792269408241672099469471186}{385020435408283559525986002947966985} a^{11} + \frac{187265117687071845969644859625714954}{385020435408283559525986002947966985} a^{10} - \frac{74653840401257055744149768263728491}{385020435408283559525986002947966985} a^{9} + \frac{81243553045804312965052434214139429}{385020435408283559525986002947966985} a^{8} - \frac{22251464124709821040172076591966919}{128340145136094519841995334315988995} a^{7} - \frac{964509142112933060415004169886982}{3235465843767088735512487419730815} a^{6} + \frac{164638835316045978435543151661304853}{385020435408283559525986002947966985} a^{5} + \frac{43771610601776459710072447684796}{3235465843767088735512487419730815} a^{4} + \frac{21493549685290871919349357157268294}{128340145136094519841995334315988995} a^{3} + \frac{23317326043336574891876145788638253}{77004087081656711905197200589593397} a^{2} - \frac{23649635961067223397043708913582737}{77004087081656711905197200589593397} a - \frac{4433293232230843145244164640998152}{128340145136094519841995334315988995}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 133049380.535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4:D_4.D_4$ (as 16T681):
| A solvable group of order 256 |
| The 19 conjugacy class representatives for $C_4:D_4.D_4$ |
| Character table for $C_4:D_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.2.30899.1, 8.0.6122800213013.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.8.7.1 | $x^{8} + 33$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 53 | Data not computed | ||||||