Properties

Label 16.0.24041492054...7797.1
Degree $16$
Signature $[0, 8]$
Discriminant $11^{10}\cdot 53^{11}$
Root discriminant $68.60$
Ramified primes $11, 53$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_4:D_4.D_4$ (as 16T681)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2107, 5831, -2049, -7873, 5031, -2129, 1815, -451, -484, 363, -33, -45, 53, -49, 27, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 27*x^14 - 49*x^13 + 53*x^12 - 45*x^11 - 33*x^10 + 363*x^9 - 484*x^8 - 451*x^7 + 1815*x^6 - 2129*x^5 + 5031*x^4 - 7873*x^3 - 2049*x^2 + 5831*x + 2107)
 
gp: K = bnfinit(x^16 - 8*x^15 + 27*x^14 - 49*x^13 + 53*x^12 - 45*x^11 - 33*x^10 + 363*x^9 - 484*x^8 - 451*x^7 + 1815*x^6 - 2129*x^5 + 5031*x^4 - 7873*x^3 - 2049*x^2 + 5831*x + 2107, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 27 x^{14} - 49 x^{13} + 53 x^{12} - 45 x^{11} - 33 x^{10} + 363 x^{9} - 484 x^{8} - 451 x^{7} + 1815 x^{6} - 2129 x^{5} + 5031 x^{4} - 7873 x^{3} - 2049 x^{2} + 5831 x + 2107 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(240414920542051180813313277797=11^{10}\cdot 53^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $68.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{77} a^{12} - \frac{6}{77} a^{11} + \frac{30}{77} a^{10} - \frac{18}{77} a^{9} - \frac{18}{77} a^{8} + \frac{37}{77} a^{7} + \frac{31}{77} a^{6} + \frac{2}{7} a^{5} + \frac{5}{11} a^{4} - \frac{2}{7} a^{3} + \frac{26}{77} a^{2} + \frac{36}{77} a - \frac{2}{11}$, $\frac{1}{77} a^{13} - \frac{6}{77} a^{11} + \frac{8}{77} a^{10} + \frac{4}{11} a^{9} + \frac{6}{77} a^{8} + \frac{2}{7} a^{7} - \frac{23}{77} a^{6} + \frac{13}{77} a^{5} + \frac{34}{77} a^{4} - \frac{29}{77} a^{3} + \frac{38}{77} a^{2} - \frac{29}{77} a - \frac{1}{11}$, $\frac{1}{477095465} a^{14} - \frac{1}{68156495} a^{13} - \frac{264021}{477095465} a^{12} + \frac{1584217}{477095465} a^{11} - \frac{103081929}{477095465} a^{10} + \frac{23792024}{477095465} a^{9} - \frac{347231}{95419093} a^{8} - \frac{118380851}{477095465} a^{7} - \frac{30768915}{95419093} a^{6} + \frac{19918936}{95419093} a^{5} - \frac{3403819}{8674463} a^{4} + \frac{31447261}{477095465} a^{3} - \frac{138344418}{477095465} a^{2} + \frac{69348353}{477095465} a - \frac{5875074}{68156495}$, $\frac{1}{93987806605} a^{15} + \frac{13}{13426829515} a^{14} - \frac{539320622}{93987806605} a^{13} + \frac{428021444}{93987806605} a^{12} + \frac{2481020977}{93987806605} a^{11} + \frac{41640150597}{93987806605} a^{10} - \frac{10409186323}{93987806605} a^{9} - \frac{46969527071}{93987806605} a^{8} + \frac{4015484927}{8544346055} a^{7} - \frac{789513023}{1708869211} a^{6} + \frac{5842906249}{18797561321} a^{5} + \frac{14015825661}{93987806605} a^{4} + \frac{4110529410}{18797561321} a^{3} - \frac{3580715701}{8544346055} a^{2} - \frac{13332564814}{93987806605} a - \frac{1077636897}{13426829515}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 143505705.722 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4:D_4.D_4$ (as 16T681):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 19 conjugacy class representatives for $C_4:D_4.D_4$
Character table for $C_4:D_4.D_4$

Intermediate fields

\(\Q(\sqrt{53}) \), 4.2.30899.1, 8.0.6122800213013.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.3.2$x^{4} - 11$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
11.8.7.1$x^{8} + 33$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
53Data not computed