Properties

Label 16.0.24033855719...5696.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 31^{8}$
Root discriminant $38.57$
Ramified primes $2, 3, 31$
Class number $72$ (GRH)
Class group $[3, 24]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16777216, 0, 0, 0, -397312, 0, 0, 0, 5313, 0, 0, 0, -97, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 97*x^12 + 5313*x^8 - 397312*x^4 + 16777216)
 
gp: K = bnfinit(x^16 - 97*x^12 + 5313*x^8 - 397312*x^4 + 16777216, 1)
 

Normalized defining polynomial

\( x^{16} - 97 x^{12} + 5313 x^{8} - 397312 x^{4} + 16777216 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24033855719478439440285696=2^{32}\cdot 3^{8}\cdot 31^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(744=2^{3}\cdot 3\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{744}(1,·)$, $\chi_{744}(683,·)$, $\chi_{744}(247,·)$, $\chi_{744}(497,·)$, $\chi_{744}(61,·)$, $\chi_{744}(743,·)$, $\chi_{744}(619,·)$, $\chi_{744}(557,·)$, $\chi_{744}(559,·)$, $\chi_{744}(433,·)$, $\chi_{744}(371,·)$, $\chi_{744}(373,·)$, $\chi_{744}(311,·)$, $\chi_{744}(185,·)$, $\chi_{744}(187,·)$, $\chi_{744}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15} a^{8} + \frac{4}{15} a^{4} + \frac{1}{15}$, $\frac{1}{120} a^{9} - \frac{41}{120} a^{5} + \frac{1}{120} a$, $\frac{1}{960} a^{10} - \frac{161}{960} a^{6} + \frac{1}{960} a^{2}$, $\frac{1}{7680} a^{11} - \frac{1121}{7680} a^{7} - \frac{2879}{7680} a^{3}$, $\frac{1}{326430720} a^{12} - \frac{929}{61440} a^{8} + \frac{12289}{61440} a^{4} - \frac{16036}{79695}$, $\frac{1}{2611445760} a^{13} - \frac{929}{491520} a^{9} - \frac{110591}{491520} a^{5} + \frac{71677}{318780} a$, $\frac{1}{20891566080} a^{14} - \frac{929}{3932160} a^{10} + \frac{872449}{3932160} a^{6} + \frac{709237}{2550240} a^{2}$, $\frac{1}{167132528640} a^{15} - \frac{929}{31457280} a^{11} + \frac{872449}{31457280} a^{7} - \frac{1841003}{20401920} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{24}$, which has order $72$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{16199}{167132528640} a^{15} + \frac{167}{31457280} a^{11} + \frac{12473}{31457280} a^{7} + \frac{1336}{79695} a^{3} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 427579.56412 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{62}) \), \(\Q(\sqrt{-62}) \), \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{31}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{93}) \), \(\Q(\sqrt{-93}) \), \(\Q(\sqrt{-186}) \), \(\Q(\sqrt{186}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{62})\), \(\Q(i, \sqrt{31})\), \(\Q(\sqrt{-2}, \sqrt{-31})\), \(\Q(\sqrt{-2}, \sqrt{31})\), \(\Q(\sqrt{2}, \sqrt{31})\), \(\Q(\sqrt{2}, \sqrt{-31})\), \(\Q(i, \sqrt{6})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{93})\), \(\Q(i, \sqrt{186})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{93})\), \(\Q(\sqrt{-2}, \sqrt{-93})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{93})\), \(\Q(\sqrt{2}, \sqrt{-93})\), \(\Q(\sqrt{6}, \sqrt{62})\), \(\Q(\sqrt{-6}, \sqrt{62})\), \(\Q(\sqrt{-3}, \sqrt{62})\), \(\Q(\sqrt{3}, \sqrt{62})\), \(\Q(\sqrt{6}, \sqrt{-62})\), \(\Q(\sqrt{-6}, \sqrt{-62})\), \(\Q(\sqrt{-3}, \sqrt{-62})\), \(\Q(\sqrt{3}, \sqrt{-62})\), \(\Q(\sqrt{6}, \sqrt{-31})\), \(\Q(\sqrt{-6}, \sqrt{-31})\), \(\Q(\sqrt{-3}, \sqrt{-31})\), \(\Q(\sqrt{3}, \sqrt{-31})\), \(\Q(\sqrt{6}, \sqrt{31})\), \(\Q(\sqrt{-6}, \sqrt{31})\), \(\Q(\sqrt{-3}, \sqrt{31})\), \(\Q(\sqrt{3}, \sqrt{31})\), 8.0.60523872256.1, \(\Q(\zeta_{24})\), 8.0.4902433652736.8, 8.0.4902433652736.2, 8.0.4902433652736.9, 8.0.4902433652736.3, 8.0.19150131456.1, 8.0.306402103296.2, 8.0.4902433652736.1, 8.0.4902433652736.6, 8.0.4902433652736.4, 8.8.4902433652736.1, 8.0.4902433652736.7, 8.0.4902433652736.5, 8.0.306402103296.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$31$31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 713 x^{2} + 138384$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$