Normalized defining polynomial
\( x^{16} - 6 x^{15} + 39 x^{14} - 166 x^{13} + 531 x^{12} - 1408 x^{11} + 3521 x^{10} - 6688 x^{9} + 5707 x^{8} + 10008 x^{7} - 35249 x^{6} + 34498 x^{5} + 18416 x^{4} - 74104 x^{3} + 73424 x^{2} - 33984 x + 15616 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24031838291621636962890625=5^{14}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{16} a^{5}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{3}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{3}{32} a^{8} - \frac{1}{16} a^{7} + \frac{7}{32} a^{6} + \frac{3}{16} a^{5} + \frac{7}{32} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{83076158761305858592591808} a^{15} + \frac{57434636983132575518125}{20769039690326464648147952} a^{14} - \frac{487293299978947809774433}{83076158761305858592591808} a^{13} + \frac{182216546961557638271507}{10384519845163232324073976} a^{12} + \frac{2047098572516990925981167}{83076158761305858592591808} a^{11} - \frac{520296241115048026847677}{41538079380652929296295904} a^{10} + \frac{2071514292799811186689769}{83076158761305858592591808} a^{9} + \frac{3527454785693537793923199}{41538079380652929296295904} a^{8} + \frac{10102602485270625191356539}{83076158761305858592591808} a^{7} - \frac{2998977930351995166150855}{41538079380652929296295904} a^{6} + \frac{5884909888309910938467851}{83076158761305858592591808} a^{5} - \frac{1427471797886070929122603}{20769039690326464648147952} a^{4} - \frac{1257907227017928116001813}{2596129961290808081018494} a^{3} - \frac{204162468074717016082415}{10384519845163232324073976} a^{2} + \frac{398677113019847273794864}{1298064980645404040509247} a - \frac{510345521537606648962582}{1298064980645404040509247}$
Class group and class number
$C_{5}\times C_{10}$, which has order $50$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136143.590528 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}, \sqrt{13})\), 4.4.274625.1, 4.4.274625.2, 8.8.75418890625.1, 8.0.4902227890625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||