Normalized defining polynomial
\( x^{16} - x^{15} + 246 x^{14} - 5528 x^{13} - 102364 x^{12} + 2534658 x^{11} + 43785164 x^{10} - 994326206 x^{9} + 13045857327 x^{8} - 278639592799 x^{7} + 5130957769597 x^{6} - 53334252425244 x^{5} + 347355235431558 x^{4} - 1527640572701475 x^{3} + 4651932548849904 x^{2} - 9598577056412940 x + 13133394052911819 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24018728224219728067156294143658245146337540906275473=41^{14}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1878.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3977=41\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3977}(1,·)$, $\chi_{3977}(2627,·)$, $\chi_{3977}(2500,·)$, $\chi_{3977}(1473,·)$, $\chi_{3977}(1034,·)$, $\chi_{3977}(79,·)$, $\chi_{3977}(2133,·)$, $\chi_{3977}(3927,·)$, $\chi_{3977}(2264,·)$, $\chi_{3977}(729,·)$, $\chi_{3977}(27,·)$, $\chi_{3977}(3868,·)$, $\chi_{3977}(2146,·)$, $\chi_{3977}(3320,·)$, $\chi_{3977}(1913,·)$, $\chi_{3977}(3775,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{1}{27} a^{6} - \frac{1}{27} a^{5} - \frac{2}{27} a^{4} + \frac{2}{27} a^{3}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{1}{27} a^{5} + \frac{2}{81} a^{4} + \frac{2}{27} a^{3}$, $\frac{1}{243} a^{11} - \frac{1}{243} a^{10} - \frac{4}{81} a^{7} - \frac{2}{81} a^{6} - \frac{34}{243} a^{5} + \frac{16}{243} a^{4} - \frac{4}{27} a^{3} - \frac{1}{27} a^{2} + \frac{1}{3} a$, $\frac{1}{729} a^{12} - \frac{4}{729} a^{10} + \frac{1}{243} a^{9} - \frac{4}{243} a^{8} - \frac{2}{81} a^{7} - \frac{31}{729} a^{6} + \frac{1}{9} a^{5} - \frac{107}{729} a^{4} + \frac{23}{243} a^{3} - \frac{10}{81} a^{2} + \frac{13}{27} a$, $\frac{1}{6561} a^{13} - \frac{1}{6561} a^{11} + \frac{1}{243} a^{10} + \frac{8}{2187} a^{9} + \frac{13}{729} a^{8} - \frac{67}{6561} a^{7} + \frac{22}{729} a^{6} + \frac{736}{6561} a^{5} - \frac{110}{729} a^{4} - \frac{86}{729} a^{3} - \frac{40}{81} a^{2} + \frac{7}{81} a - \frac{1}{3}$, $\frac{1}{5701509} a^{14} + \frac{1}{24057} a^{13} + \frac{2303}{5701509} a^{12} - \frac{601}{1900503} a^{11} - \frac{4585}{1900503} a^{10} - \frac{83}{23463} a^{9} + \frac{60035}{5701509} a^{8} - \frac{30985}{1900503} a^{7} + \frac{27935}{518319} a^{6} - \frac{45146}{1900503} a^{5} - \frac{71941}{633501} a^{4} - \frac{8252}{70389} a^{3} + \frac{6770}{23463} a^{2} + \frac{359}{23463} a - \frac{72}{869}$, $\frac{1}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{15} + \frac{878266025133807292451770380389680959689707825973556841257398372238570566650444354423648}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{14} + \frac{107768592089077586033229462582535033409107766895188206006500785039847318580935482143825355}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{13} - \frac{6125005266638537931464653607160904729081580523207210632499505665255410540333185575506929342}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{12} + \frac{7689261401417087251930424133769744924801958131262812780313748032124472508541810559659050}{36163754052547970918078666005084067260971543102853273979821539309095346511636934803415197761} a^{11} - \frac{3149288419367971808119393542206200637361096094863137259855566042815886090721561008160175174}{4665124272778688248432147914655844676665329060268072343396978570873299700001164589640560511169} a^{10} - \frac{65873057592927794773627533115816506742467200561702284656125645329018363697645903704419584959}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{9} - \frac{12968633977261677102847826727944238839865077891814767998754471166184426691981768669889521089}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{8} - \frac{40362360577065168823974694304186109301863801605942625414451550786162586113891133271200820903}{1272306619848733158663313067633412184545089743709474275471903246601809009091226706265607412137} a^{7} - \frac{666718572679412228258309975735090046782331559663233272225614675734168067422503020938061629254}{13995372818336064745296443743967534029995987180804217030190935712619899100003493768921681533507} a^{6} + \frac{482734194574618823561328945290769963186365057833779175562757680493400286833349073666647351825}{4665124272778688248432147914655844676665329060268072343396978570873299700001164589640560511169} a^{5} - \frac{198068080949238067586104741315723215432618881719433107810597262788458808773556376200258561046}{1555041424259562749477382638218614892221776353422690781132326190291099900000388196546853503723} a^{4} + \frac{70680410772675447386803080417920591558336675608593030631652076849105494972221390075003508225}{518347141419854249825794212739538297407258784474230260377442063430366633333462732182284501241} a^{3} - \frac{36533207317290024610557883602321402743720273299676094856875093844689494532203835965345325779}{172782380473284749941931404246512765802419594824743420125814021143455544444487577394094833747} a^{2} + \frac{14836944940625056876306019512665974993841613945855946654423754279065757282590078757950256374}{57594126824428249980643801415504255267473198274914473375271340381151848148162525798031611249} a + \frac{17783052043817990345439269819430570184254559564223589479786153093416621411811574189809390}{193919618937468855153682833048835876321458580050217082071620674684012956727819952181924617}$
Class group and class number
$C_{13002309512}$, which has order $13002309512$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1824756124090 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.1534203313.1, 8.8.383800273765009032977233.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 97 | Data not computed | ||||||