Properties

Label 16.0.23948260540...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 59^{2}$
Root discriminant $38.57$
Ramified primes $2, 3, 5, 59$
Class number $212$ (GRH)
Class group $[2, 106]$ (GRH)
Galois group 16T1102

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3481, 0, 30444, 0, 53962, 0, 42102, 0, 17390, 0, 4038, 0, 527, 0, 36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 36*x^14 + 527*x^12 + 4038*x^10 + 17390*x^8 + 42102*x^6 + 53962*x^4 + 30444*x^2 + 3481)
 
gp: K = bnfinit(x^16 + 36*x^14 + 527*x^12 + 4038*x^10 + 17390*x^8 + 42102*x^6 + 53962*x^4 + 30444*x^2 + 3481, 1)
 

Normalized defining polynomial

\( x^{16} + 36 x^{14} + 527 x^{12} + 4038 x^{10} + 17390 x^{8} + 42102 x^{6} + 53962 x^{4} + 30444 x^{2} + 3481 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(23948260540416000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 59^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{10} + \frac{2}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{3}$, $\frac{1}{3357395} a^{14} + \frac{200164}{3357395} a^{12} - \frac{1184}{3357395} a^{10} + \frac{84573}{3357395} a^{8} + \frac{814539}{3357395} a^{6} + \frac{503659}{3357395} a^{4} + \frac{609624}{3357395} a^{2} - \frac{2858}{11381}$, $\frac{1}{3357395} a^{15} + \frac{200164}{3357395} a^{13} - \frac{1184}{3357395} a^{11} + \frac{84573}{3357395} a^{9} + \frac{814539}{3357395} a^{7} + \frac{503659}{3357395} a^{5} + \frac{609624}{3357395} a^{3} - \frac{2858}{11381} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{106}$, which has order $212$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3121.7160225 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1102:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 64 conjugacy class representatives for t16n1102 are not computed
Character table for t16n1102 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$59$$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
59.2.1.1$x^{2} - 59$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.1.1$x^{2} - 59$$2$$1$$1$$C_2$$[\ ]_{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$